Cho \(P=-\frac{3}{\sqrt{x}-2}\). Với x>4, tìm GTLN của P(x+1)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Cho \(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)
a. Rút gọn P
b. C/m: P> -3
c. Tìm GTLN của P
a) Điều kiện xác định : \(x\ge0;x\ne1\)
\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)
b) Ta có : \(P=\frac{7-3\sqrt{x}}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=\frac{19}{\sqrt{x}+4}-3>-3\)
c) Theo b) : \(P=\frac{19}{\sqrt{x}+4}-3\)
Ta có : \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+4\ge4\Leftrightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\Leftrightarrow\frac{19}{\sqrt{x}+4}-3\le\frac{7}{4}\)
\(\Rightarrow P\le\frac{7}{4}\) . Dấu "=" xảy ra khi x = 0
Vậy P đạt giá trị lớn nhất bằng \(\frac{7}{4}\) , khi x = 0
cho \(B=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)
a)rút gọn
b) chứng minh B>-3
c)tìm GTLN của B
M=\(\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{x-3\sqrt{x}-4}\)
Rút gọn M
Tìm GTLN của M
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
A=\(\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x+1}}{\sqrt{x}-1}\)
a)cm A>-3
b) tìm GTLN của A
Xin lỗi online math em lỡ spam rồi đừng trừ diem a
Cho B=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)
a) Rút Gọn B
b) Tìm GTLN, GTNN của B
cho biểu thức P=\(\frac{10\sqrt{x}}{x+3\sqrt{x}-4}\)\(-\frac{2\sqrt{x}}{\sqrt{x}+4}\)\(-\frac{\sqrt{x}}{1-\sqrt{x}}\)
a) Rút gọn P
b) chứng minh: P>-3 với mọi x thuộc tập xác định
c) tìm GTLN của P
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
e hèm
vãi