Tìm GTNN của (x-1)(x+2)(x+3)(x+6)?
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
tìm GTNN của biểu thức (x-1)(x+2)(x+3)(x+6)
(x - 1)(x + 2)(x + 3)(x + 6) = (x -1)(x + 6) (x + 2)(x+3) = (x2 + 5x - 6) (x2 + 5x + 6)
đặt x2 + 5x = t
thay vào được: (t - 6) (t+ 6) = t2 - 36
có: (x - 1)(x + 2)(x + 3)(x + 6) = t2 - 36 = (x2 + 5x)2 - 36
Vậy giá trị nhỏ nhất của biểu thức là -36
Tìm GTNN của
A=(x-1)(x+2)(x+3)(x+6)
(x-1)(x+2)(x+3)(x+6)
=[(x-1)(x+6)][(x+2)(x+3)]
=(x^2+5x-6)(x^2+5x+6)
=(x^2+5x)^2-36>=-36
=>min=-36<=>x=0 hoặc x=-5
\(VìA=(x-1).(x+2).(x+3).(x+6)\)\(\Rightarrow\)\(A=x.(-1+2+3+6)\)\(\Rightarrow\)\(A=x.10\)
Vì A nhỏ nhất \(\Rightarrow\)A=0 mà A=x.10\(\Rightarrow\)0=x.10\(\Rightarrow\)x=0\(:\)10\(\Rightarrow\)x=0
\(Vậy\) \(A\) \(nhỏ\) \(nhất\) \(khi\) x=0
\(Vì\)\(A=\) \((x-1).(x+2).(x+3).(x+6)\)\(\Rightarrow\)\(A= \)\(x.(-1+2+3+6)\)\(\Rightarrow\)\(A=x.10\)
\(Vì\) \(A\) \(nhỏ\) \(nhất\)\(\Rightarrow\)\(A=\)0 \(mà\) \(A=x.10\) \(\Rightarrow\)\(x.10= 0\)\(\Rightarrow\)\(x=0:10\)\(\Rightarrow\)\(x=0\)
\(Vậy\) \(A \) \(nhỏ\) \(nhất\) \(khi\) \(x=0\)
tìm các giá trị của x để
P=(x-1)(x+2)(x+3)(x+6)đạt GTNN Tim gtnn đó
\(P=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(P=\left(x^2+5x\right)^2-36\)
\(P=\left[x\left(x+5\right)\right]^2-36\)
Vậy GTNN của P = -36 khi x = 0 hoặc -5.
Tìm GTNN của biểu thức :
( x + 1)(x - 2 ) ( x - 3 ) ( x- 6 )
\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow\text{MIN}_{-36}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
Tìm GTLN, GTNN (nếu có) của biểu thức D=(x-1).(x+3).(x+2).(x+6)
Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)
=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]
=> D = (x2 + 5x - 6) . (x2 + 5x + 6)
=> D = (x2 + 5x)2 - 36
=> D = [x(x + 5)]2 - 36
Mà : [x(x + 5)]2 \(\ge0\forall x\)
Suy ra : D = [x(x + 5)]2 - 36 \(\ge-36\forall x\)
Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5
Tìm GTNN của biểu thức sau : (x-2)(x-3)(x-6)(x+1)-36