*Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, P là 1 điểm trên AC ( P# Ava C).
Kẻ AN vuông góc với BP(N thuộc BP) .Trên BN lấy điểm I sao cho BI = AN.
a) CMR: Tam giác M I N vuông cân.
b) Cho SABC = 4.SIMN. Tính góc ABP ?
Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
1)cho tam giác ABC vuông cân tại A. M là trung điểm của BC. G thuộc AB sao cgo AG=\(\frac{1}{3}\)AB, E là chân đường vuông góc hạ từ M xuống CG. MG và AC cắt nhau tại D. so sánh DE và BC
2) cho tam giác ABC vuông tại A và \(\widehat{BAC}\)= 60' , M thuộc BC sao cho AB+BM=AC+CM. tính\(\widehat{CAM}\)
3) cho tam giác ABC cân tại A , gọi E là điểm bất kì nằm giữa B và C , đường thẳng qua E vuông góc với AB và đường thẳng qua C vuông góc với AC cắt nhau tại D. gọi K là trung điểm của BE. tính \(\widehat{AKD}\)
4)cho tam giác ABC cân tại A. trên đường thẳng AC lấy điểm M tùy ý.đường thẳng vuông góc với BC qua M cắt BC tại H. gọi I là trung điểm của BM. tính\(\widehat{HAI}\)
Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AB. Trên cạnh BC lấy điểm N sao cho MN vuông với BC. CMR : CN² - BN²= AC²
cảm ơn bạn rất nhiều nhờ có bài toán này mà tôi đã nghĩ ra bài toán khác
chúc bạn học tốt
\(\Delta AMN\)vuông tại N có\(\widehat{B}=90^0\) nên là tam giác vuông cân
\(\Rightarrow MN=BN\)
\(\Delta BMN\)có \(BM^2=BN^2+MN^2\Rightarrow AM^2=2BN^2\)
\(\Delta MNC\)có \(CM^2=CN^2+MN^2=CN^2+BN^2\)
\(\Delta AMC\)có \(AC^2=CM^2-AM^2=CN^2+BN^2-2BN^2=CN^2-BN^2\left(đpcm\right)\)
Cho tam giác ABC vuông tại A. Gọi N là trung điểm của AC. Đường trung trực của AC cắt BC tại điểm M. Chứng minh: tam giác MAB cân tại M
Cho tam giác ABC ,trên nửa mặt phẳng bờ BC không chứa điểm C vẽ tam giác ABD vuông cân tại A trên nửa mặt phẳng bờ AC không chứa điểm B vẽ tam giác ACE vuông cân tại A. Gọi M,P,Q theo thứ tự là trung điểm của BC, BD,CE. Tam giác MPQ là tam giác gì ? Vì sao
B1 :Cho tam giác ABC có 2 đường cao BD,CE. Gọi M,N là trung điểm của BC,DE. C/m MN vuông góc DE.
B2: Cho tam giác ABC cân tại A. H là trung điểm của BC. Kẻ HE vuông góc AC. Gọi I là trung điểm của HE. C/m AI vuông góc BE
B3: Cho tam giác ABC vuông tại A. M là trung điểm của BC. Đường cao AH. Kẻ HE vuông góc AC cắt AM tại N. C/m AM vuông góc BN
Câu 1: Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, kẻ qua C tia Cy vuông góc với AC. Gọi I là giao điểm của Bx và Cy. CMR:
a, Tam giác ABI = tam giác ACI
b, AI là trung trực của BC
Câu 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N, sao cho BM=CN
a, CM tam giác AMN cân
b, Kẻ BH vuông góc với AM, CK vuông góc với AN. CMR BH = CK
c, Gọi O là giao điểm của BH và CK. CM tam giác OBC cân
d, Gọi D là trung điểm của BC. CMR 3 điểm A,D,O thẳng hàng
Câu 3: Cho tam giác ABC cân tại A, M là trung điểm của BC
a, CM tam giác ABM = tam giác ACM
b, CM AM vuông góc với BC
c, Trên cạnh AB lấy điểm E, trên cạnh CA lấy điểm F, sao cho BE = CF. CM tam giác EBC = tam giác FCB
d, CM EF//BC
@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha
cho tam giác abc cân tại a. gọi m là trung điểm của cạnh đáy bc, n là lình chiếu vuông góc của m trên cạnh ac và o là trung điểm của mn. chứng minh rằng
1, tam giác amc đồng dạng với tam giác mnc
2, am.nc=om.bc
3, ao vuông góc bn
Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh đáy BC, N là hình chiếu vuông góc của M trên cạnh AC và O là trung điểm MN. Chứng minh rằng:
1)Tam giác AMC đồng dạng với tam giác MNC
2)AM . NC=OM . BC
3)AO vuông góc với BN