Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Anh
Xem chi tiết
tep.
Xem chi tiết
Đoàn Đức Hà
13 tháng 7 2021 lúc 19:49

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)

\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\)

Tương tự ta cũng chứng minh được \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}>1\)

mà \(\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\right)+\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}\right)\)

\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)là số nguyên 

do đó \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)(vì \(a\ne c\))

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\)(vì \(b\ne d\))

Khi đó \(abcd=ac.ac=\left(ac\right)^2\)là số chính phương. 

Khách vãng lai đã xóa
Nguyễn Lê Thu Xuân
Xem chi tiết
Thúy Ngân
4 tháng 9 2017 lúc 19:22

Theo đề ta có :

\(\frac{b}{a-c}=\frac{a+b}{c}=\frac{a}{b}\)

* Đầu tiên, ta xét

\(\frac{b}{a-c}=\frac{a}{b}\):

\(\Rightarrow b^2=a\left(a-c\right)\) \(=a^2-ac\)

\(\Rightarrow a^2-b^2=ac\)(1)

* Xét  \(\frac{a+b}{c}=\frac{a}{b}\)

\(\Rightarrow\left(a+b\right)b=ac\)

. Từ (1) ta thay \(ac=a^2-b^2\):

\(\Rightarrow\)\(\left(a+b\right)b=a^2-b^2\)

\(\Rightarrow\left(a+b\right)b=\left(a+b\right)\left(a-b\right)\)

\(\Rightarrow b=a-b\Rightarrow a=b+b=2b\)(2)

* Xét \(\frac{b}{a-c}=\frac{a+b}{c}\):

\(\Rightarrow bc=\left(a-c\right)\left(a+b\right)\)(với a = 2b)

\(\Rightarrow bc=\left(2b-c\right)\left(2b+b\right)\)

\(\Rightarrow bc=\left(2b-c\right).3b\)

\(\Rightarrow\frac{bc}{b}=\frac{\left(2b-c\right).3b}{b}\)

\(\Rightarrow c=\left(2b-c\right).3\)

\(\Rightarrow c=6b-3c\)

\(\Rightarrow6b=c+3c=4c\)(3)

Từ (2) và  (3) \(\Rightarrow\)ta có :

\(a=2b\) và \(6b=4c\)

\(\Rightarrow\frac{a}{8}=\frac{b}{4}\)và \(\frac{b}{4}=\frac{c}{6}\)

\(\Rightarrow\frac{a}{8}=\frac{b}{4}=\frac{c}{6}\)(đpcm)

Nguyễn Tất Thắng
4 tháng 9 2017 lúc 19:41

\(\frac{b}{a-c}=\frac{a+b}{c}=\frac{a}{b}=\frac{b+\left(a+b\right)+a}{a-c+c+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\frac{a}{b}=2\Leftrightarrow a=2b;\frac{a+b}{c}=2\Leftrightarrow a+b=2c\Leftrightarrow2b+b=2c\Leftrightarrow3b=2c\)

Ta có: \(\frac{a}{8}=\frac{2b}{8}=\frac{b}{4};\frac{c}{6}=\frac{2c}{12}=\frac{3b}{12}=\frac{b}{4}\)

=> \(\frac{a}{8}=\frac{b}{4}=\frac{c}{6}\)

Nấm Nấm
Xem chi tiết
Nyatmax
1 tháng 9 2019 lúc 19:59

Dat \(\hept{\begin{cases}A=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\\B=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\end{cases}}\)

Ta co:\(A=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\left(1\right)\)

\(B=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\left(2\right)\)

Cong ve voi ve cua (1) va (2) ta duoc:

\(P=A+B\ge6+\frac{3}{2}=\frac{15}{2}\)

Dau '=' xay ra khi \(a=b=c\)

๖²⁴ʱƘ-ƔℌŤ༉
1 tháng 9 2019 lúc 19:56

Chứng minh ĐBT:\(\frac{b}{a}+\frac{a}{b}\ge2\left(a,b\ne0\right)\)(Dấu "="\(\Leftrightarrow a=b=1\))

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(đpcm\right)\)

Vậy \(\frac{b+c}{a}+\frac{a}{b+c}\ge2\)

\(\frac{a+c}{b}+\frac{b}{c+a}\ge2\)

\(\frac{a+b}{c}+\frac{c}{b+a}\ge2\)

\(\Rightarrow P\ge6\)

Vậy \(P_{min}=6\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}}\)

Nguyễn Khang
1 tháng 9 2019 lúc 20:04

dấu = ko xảy ra => tất cả sai:)

Nết Đặng
Xem chi tiết
Lê Văn Hoàng
Xem chi tiết
Nguyễn Thiều Công Thành
16 tháng 9 2017 lúc 22:08

ta có:

\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)

\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)

\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)

\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)

vậy min M=0 khi a=b=c=d

Hoàng Ngoc Diệp
Xem chi tiết
alibaba nguyễn
1 tháng 12 2019 lúc 10:37

Giả sử:

\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)

Từ đây ta có:

\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)

Ta chứng minh

\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)

Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó

Khách vãng lai đã xóa
Doraemon
Xem chi tiết
Nguyễn Minh Hải
15 tháng 3 2016 lúc 21:01

áp dụng BĐT cosi với các số a,b,c >0 thì a/b+b/a>=2

b/c+c/b>=2

a/c+c/a>=2

vậy B min =8 khi a=b=c

Lê Trường Lân
Xem chi tiết
Tran Le Khanh Linh
16 tháng 5 2020 lúc 21:06

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
16 tháng 5 2020 lúc 21:07

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

Khách vãng lai đã xóa