Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Trung Dũng
Xem chi tiết
nguyễn thành trung
Xem chi tiết
Mai Nguyễn Bảo Ngọc
23 tháng 2 2017 lúc 20:54

trước tiên bạn phải tính:

2013/1+2012/2+2011/3+.....+2/2012+1/2013

=1+2012/2)+(1+2011/3)+.....+(1+2/2012)+(1+1/2013) +1 {BƯỚC NÀY TÁCH 2013 RA LÀM 2013SỐ1 ĐỂ CÔNG VS CÁC THỪA SỐ CÒN LẠI}

=2014/2+2014/3+...+2014/2012+2014/2013+2014/2014

=2014.(1/2+1/3+....+1/2012+1/20131/2014

suy ra x=2014

nguyenquangminh
Xem chi tiết
nguyenquangminh
24 tháng 2 2018 lúc 16:09

mình đang cần gấp.Ngày 26 tháng 2 năm 2018 là mình phải nộp rồi

Phan Trung Dũng
Xem chi tiết
Cao Thành Long
Xem chi tiết
Haruno Sakura
Xem chi tiết
trang chelsea
27 tháng 1 2016 lúc 11:20

Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh

Nguyễn Mạnh Trung
27 tháng 1 2016 lúc 11:21

\(7832\)

trang chelsea
27 tháng 1 2016 lúc 11:21

Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh

Anh yêu Eri nhiều
Xem chi tiết
Hann Hann
Xem chi tiết
Nga Subeo
Xem chi tiết
Tran Thi Xuan
Xem chi tiết
Boy Lanh Lung
20 tháng 8 2017 lúc 12:53

x2+y2+z2= xy+yz+zx.

=> 2x2+2y2+2z2-2xy-2yz-2zx=0

=> ( x-y)2+(y-z.)2+(z-x)=0

=> x=y=z=0

Thay x=y=z vào x2011+y2011+z2011=32012 ta được:

3.x2011=3.32011

=> x2011=32011

=> x=3 hoặc x = -3

Hay x=y=z=3 hoặc x=y=z=-3

Đinh Đức Hùng
20 tháng 8 2017 lúc 13:11

1) có bn giải rồi ko giải nữa

2) \(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(2011^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(2012^4+\frac{1}{4}\right)}\)

Với mọi n thuộc N ta có :

\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)

\(=\left[n\left(n-1\right)+\frac{1}{2}\right]\left[n\left(n+1\right)+\frac{1}{2}\right]\)

Áp dụng ta được :

\(A=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(2011.2012+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right).......\left(2012.2013+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{2012.2013+\frac{1}{2}}=\frac{1}{8100313}\)