giúp mk nha
Cho p là số nguyên tố > 3
Chứng minh p : 6 dư 1 hoặc 5
giúp mk ngay bây giờ nhé các bạn
1. Cho n là 1 số nguyên tố > 3. Chứng minh p:6 dư 1 hoặc 5
2
a, cho n là 1 số tự nhiên ko chia hết cho 3. Chứng minh n2 : 3 dư 1
b, cho p là 1 số nguyên tố > 3. Hỏi p2 + 2018 là số nguyên tố hay hợp số?
thanks các bạn
giúp mk ngay bây giờ nhé các bạn
1. Cho n là 1 số nguyên tố > 3. Chứng minh p:6 dư 1 hoặc 5
2
a, cho n là 1 số tự nhiên ko chia hết cho 3. Chứng minh n2 : 3 dư 1
b, cho p là 1 số nguyên tố > 3. Hỏi p2 + 2018 là số nguyên tố hay hợp số?
thanks các bạn
2. a) Nếu n = 3k +1 thì n2 + (3k+1) (3k+1) hay n2 = 3k(3k+1)+ 3k +1.
Rõ ràng n2 chia co 3 dư 1.
Nếu n= 3k+2 thì n2 = (3k+2) (3k+2) hay n2 =3k(3k+2)+ 2 ( 3k + 2)
= 3k (3k+2 ) + 6k +4.
2 số hạngđầu chia hết cho 3, số hạng cuối chia cho 3 dư 1 nên n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. vậy p2 chia cho 3 duw1 tức là p2 = 3k+1 do đó p2 + 2018 = 3k +1 + 2018 = 3k + 2019 cha hết cho 3. Vậy p2 + 2018 là hợp số
Tớ xin llõi, tớ muốn giúp cậu lắm nhưng tớ chua học, xin lõi nhé!
CHO BA SỐ NGUYÊN TỐ LỚN HƠN 3CHỨNG MINH RẰNG TỒN TẠI HAI SỐ CÓ TỔNG HOẶC HIỆU CHIA HẾT CHO 12
cho p là số nguyên tố lớn hơn 3.Chứng minh rằng p chia cho 6 có số dư là 1 hoặc 5
CMR: số nguyên tố p; p>5 khi chia cho 6 chỉ có dư là 1 hoặc 5
ta có: p là số nguyên tố> 5 nên p:6 dư 1;2;3;4;5. p=6k+1;6k+2;6k+3;6k+4;6k+5.
với p= 6k+1 có dư là 1.
với p= 6k+2= 2[3k+1] {loại}
với p= 6k+3= 3[2k+1] {loại}
với p= 6k+4= 2[3k+2] {loại}
với p= 6k+5 có dư là 5.
VẬY nếu p là nguyên tố> 5 thì p: 6 chỉ có dư là 1 hoặc 5
Chứng minh rằng : khi chia một số nguyên tố cho 30 thì được số dư là 1 hoặc là số nguyên tố
Khi A=2,3,5 thỏa mãn
khi A>5 ( A là số nguyên tố)
Ta có:
A=2.5.3.k+r
nên A−r⋮2,3,5
Xét A−r⋮2 Ta có A lẻ nên r lẻ và r<30
Xét A−r⋮5 Do A không chia hết 5 nên r không chia hết 5 và r
Xét A−r⋮3 Do A không chia hết 3 nên r không chia hết 3
Nếu A chia 3 dư 1 thì r chia 3 dư 1. Ta có các số chia 3 dư 1; <30; không chia hết 5 ; lẻ; không chia hết 3 là:
" 1,7,13,19"
Nếu A chia 3 dư 1 thì r chia 3 dư 2 Ta có các số chia 3 dư 2; <30; không chia hết 5 ; lẻ ; không chia hết 3 là:
" 11, 17,29"
=>đpcm
Chứng minh rằng : số nguyên tố lớn hơn hoặc bằng khi chia hết cho 6 thì dư 1 hoặc dư 5
Cho p là số nguyên tố lớn hơn 3 . Giải thích tại sao phép tính p : 6 có số dư là 1 hoặc 5
Chứng minh khi chia một số nguyên tố bất kì cho 30 thì được số dư là 1 hoặc là một số nguyên tố.
Giả sử A là 1 số nguyên tố , A = 30 k + r với k,rεN và 0≤r<30.
Nếu r chia hết cho 2, 3 hoặc 5 thì A cũng chia hết cho 2, 3 (hoặc 5) nên A = 2, 3 hoặc 5 ( thỏa mãn)
Nếu r không chia hết cho 2, 3 và 5 : Giả sử r là hợp số thì r=r1.r2 với r1,r2 > 1.
Vì r không chia hết cho 2, 3 và 5 nên r1,r2 cũng không chia hết cho 2, 3 và 5 ⇒r1,r2 ≥ 7
⇒r=r1.r2≥7.7=49 ( vô lý ).
Vậy r không phải là hợp số nên r = 1 hoặc r là số nguyên tố.