CM:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Cho A=\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.................+\frac{1}{\sqrt{79}+\sqrt{80}}\)
CM A>4
Với mọi n thuộc N ta có :
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)-n}=\sqrt{n+1}-\sqrt{n}\)
Áp dụng ta được :
\(A=\sqrt{2}-\sqrt{1}+\sqrt{4}-\sqrt{3}+....+\sqrt{80}-\sqrt{79}\)
\(=\left(\sqrt{2}+\sqrt{4}+...+\sqrt{80}\right)-\left(\sqrt{1}+\sqrt{3}+...+\sqrt{79}\right)\)
Đến đây tịt òy ai vô giải nối với :((((((((((
Ta có:
\(2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)
> \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)
\(=\sqrt{81}-\sqrt{1}=9-1=8\)
\(\Rightarrow A>4\)
CMR \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Trước hết , ta cần chứng minh \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)(*) (Bạn tự chứng minh)
Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(\Rightarrow2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
Áp dụng (*) :\(\Rightarrow2A>\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{4}\right)+...+\left(\sqrt{80}-\sqrt{79}\right)+\left(\sqrt{81}-\sqrt{80}\right)\)
\(\Rightarrow2A>\sqrt{81}-1=8\Rightarrow A>4\)(đpcm)
CMR\(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Tổng quát ta có: Với \(n\inℕ\)ta có:
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n}+\sqrt{n+1}}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)
Với \(n=2\)\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\)
Với \(n=3\)\(\Rightarrow\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\)
...........................
Với \(n=79\)\(\Rightarrow\frac{1}{\sqrt{79}+\sqrt{80}}=\sqrt{80}-\sqrt{79}\)
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.....+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{80}-\sqrt{79}\)
\(=\sqrt{80}-\sqrt{2}=\sqrt{40.2}-\sqrt{2}=\sqrt{40}.\sqrt{2}-\sqrt{2}\)
\(=\sqrt{2}.\left(\sqrt{40}-1\right)>\sqrt{2}.\left(\sqrt{36}-1\right)\)
\(=\sqrt{2}.\left(6-1\right)=5\sqrt{2}>4\)( đpcm )
CMR:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+....+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+....\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\) (40 số)
................................................................\(>\frac{40}{10}=4\)
=>đpcm
hc tốt
ko chắc lắm :)
Chứng minh rằng: \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Đặt \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
Ta có: \(\frac{1}{1+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)
...
\(\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
Cộng các bất đẳng thức trên lại với nhau, ta được:
\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{81}-1\right)=\frac{1}{2}\cdot\left(9-1\right)=\frac{1}{2}\cdot8=4\)
\(\Leftrightarrow A>4\)(đpcm)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\) CMBĐT
\(Chứngminh:\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
chưngs minh S=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
\(S=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(\Leftrightarrow2S=\frac{1}{1+\sqrt{2}}+\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)
\(=\sqrt{81}-\sqrt{1}=9-1=8\)
\(\Rightarrow S>\frac{8}{2}=4\)
trục căn thức ở mẫu lên
\(S=\sqrt{2}-1+...+\sqrt{80}-\sqrt{79}\)
\(S=\sqrt{80}-1\)
\(\left(\sqrt{80}-1+1\right)^2=80\)
\(\left(4+1\right)^2=25< 80\)
vậy ...
cho A = \(^{\frac{1}{\sqrt{1+\sqrt{2}}}+\frac{1}{\sqrt{3+\sqrt{4}}}+...+\frac{1}{\sqrt{79+\sqrt{80}}}}\)
chứng minh A>4
dùng cách trục căn thức là ra