Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
??gsg
Xem chi tiết
Ng Ngọc
4 tháng 1 lúc 22:05

\(B=2^{2018}-2^{2017}-2^{2016}-2^{2015}-2^{2014}\)

\(=>2B=2^{2019}-2^{2018}-2^{2017}-2^{2016}-2^{2015}\)

\(=>2B+B=2^{2019}-2^{2014}\)

\(=>B=\dfrac{2^{2019}-2^{2014}}{3}\)

Nguyễn Lương Bảo Tiên
Xem chi tiết
Nguyễn Thị Thùy Dương
8 tháng 11 2015 lúc 22:08

\(C=\frac{T}{M}\)

\(M=\left(1+\frac{3998}{2}\right)+\left(1+\frac{3997}{3}\right)+.....+\left(1+\frac{1}{3999}\right)+\frac{4000}{4000}\)

    \(=\frac{4000}{2}+\frac{4000}{3}+......+\frac{4000}{3999}+\frac{4000}{4000}=4000.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4000}\right)\)

   \(=4000.T\)

\(C=\frac{T}{M}=\frac{T}{4000T}=\frac{1}{4000}\)

Nguyễn Giang
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 8 2021 lúc 22:14

\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)

\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)

Đinh Thị Hà Linh
Xem chi tiết
Trần Phương Uyên
Xem chi tiết
HT.Phong (9A5)
1 tháng 9 2023 lúc 9:17

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

HT.Phong (9A5)
1 tháng 9 2023 lúc 9:25

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

Nguyễn Thái Tuấn
Xem chi tiết
Tâm Trần Ngọc
19 tháng 4 2019 lúc 21:05

A=[(3999/2+1)+(3998/3+1)+...+(1/4000+1)+1]/(1/2+1/3+...+1/4001)

A=(4001/2+4001/3+...+4001/4001)/(1/2+1/3+...+1/4001)

A=[4001(1/2+1/3+...+1/4001)]/(1/2+1/3+...+1/4001)

A=4001

Vậy A=4001

Ladonna Xavia
Xem chi tiết
Ngô Hải Nam
20 tháng 12 2022 lúc 20:01

\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2018 lúc 2:58

Ta có  2 + 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 + ... + C 2017 2017 .2 0

2 − 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 . − 1 + ... + C 2017 2017 .2 0 . − 1 2017

Trừ từng vế hai đẳng thức trên ta được:

3 2017 − 1 = 2 C 2017 1 .2 2016 + C 2017 3 .2 2014 + ... + C 2017 2017 .2 0

Vậy  M = 3 2017 − 1 2

Chọn đáp án D.

Hiền Thảo Bùi
Xem chi tiết
huy khánh
Xem chi tiết
I don
16 tháng 7 2018 lúc 15:57

ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)

=> 2S + S = -22015 + 1

=> 3S = -22015 + 1

=> 3S - 1 = -22015

=> 1 - 3S = 22015

( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)