Chứng tỏ phương trình sau vô nghiệm
x^2 + x + 3 = 0
Đề: Chứng tỏ phương trình sau vô nghiệm c) [2(|x| + 7)] - 3 = 0
=>2|x|+14-3=0
=>2|x|+11=0
=>2|x|=-11(loại)
Chứng tỏ phương trình sau vô nghiệm
x^2 + x + 3 = 0
Đặt \(B=x^2+x+3=0\)
\(\Rightarrow2B=2x^2+2x+3=0\)
\(=x^2+\left(x^2+2x+1\right)+2=0\)
\(=x^2+\left(x+2\right)^2+2=0\)
\(\Rightarrow x^2+\left(x+2\right)^2=-2\)
Có:
\(x^2\ge0\)
\(\left(x+2\right)^2\ge0\)
\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)
Mà \(-2< 0\)
Vì vậy phương trình vô nghiệm.
chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
Chứng tỏ các phương trình sau vô nghiệm:
a. |x|+1=0 b. x2 + 2x + 3=0
a) Ta có \(\left|x\right|\ge0\) nên |x| + 1 > 0 với mọi x. Do đó phương trình đã cho vô nghiệm.
b) Tương tự, phân tích \(x^2+2x+3=\left(x+1\right)^2+2>0\)
chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
Chứng tỏ rằng các phương trình sau vô nghiệm :
a)x^2 +2*x+3 = 0 b)x^2+2x+4=0
a) Ta có: \(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2>0\)
Vậy pt vô nghiệm
b) Ta có \(x^2+2x+4\)
\(=\left(x^2+2x+1\right)+3\)
\(=\left(x+1\right)^2+3>0\)
Vậy pt vô nghiệm
Chứng tỏ rằng các phương trình sau vô nghiệm:
a)\((x-1)^2+3x^2=0\)
b)\(x^2+2x+3=0\)
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(3x^2\ge0\)
\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy phương trình có nghiệm \(x=0\) và \(x=1\)
Đề sai nhé
\(b)\) Ta có :
\(x^2+2x+3\)
\(=\)\(\left(x^2+2x+1\right)+2\)
\(=\)\(\left(x+1\right)^2+2\ge2>0\)
Vậy đa thức \(x^2+2x+3\) vô nghiệm
Em mới lớp 7 có gì sai anh thông cảm nhé
a) Ta có :
( x - 1 ) 2 lớn hơn hoặc bằng 0
3x2 lớn hơn hoặc bằng 0
=> ( x - 1 )2 - 3x2 lớn hơn hoặc bằng 0
Dấu = xảy ra khi :
\(\hept{\begin{cases}x-1=0\\3x=0\end{cases}}=>\hept{\begin{cases}x=1\\x=0\end{cases}}\)
=> x thuộc rỗng
Vậy ( x - 1 )2 + 3x2 vô nghiệm
b) x2 + 2x + 3
= x2 + 2x + 1 +2
= ( x + 1 ) 2 + 2 ( áp dụng hằng đẳng thức )
Mà ( x + 1 )2 lớn hơn hoặc bằng 0
=> ( x + 1 )2 + 1 lớn hơn hoặc bằng 1
=> x2 + 2x + 3 > 0
Vậy x2 + 2x + 3 vô nghiệm
Chứng tỏ rằng các phương trình sau đây vô nghiệm: 2(x + 1) = 3 + 2x
Ta có: 2(x + 1) = 3 + 2x ⇔ 2x + 2 = 3 + 2x ⇔ 0x = 1
Vậy phương trình vô nghiệm.
Bài 4: chứng tỏ rằng các phương trình sau vô nghiệm
a)x^2+2x+3 / x^2-x+1 =0
b)x / x+2 + 4 / x-2 = 4/x^2-4
a) \(ĐKXĐ:x\inℝ\)
\(\frac{x^2+2x+3}{x^2-x+1}=0\)
\(\Leftrightarrow x^2+2x+3=0\)
\(\Leftrightarrow\left(x+1\right)^2+2=0\left(ktm\right)\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
b) \(ĐKXĐ:x\ne\pm2\)
\(\frac{x}{x+2}+\frac{4}{x-2}=\frac{4}{x^2-4}\)
\(\Leftrightarrow\frac{x}{x+2}+\frac{4}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x-2\right)+4\left(x+2\right)-4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2-2x+4x+8-4=0\)
\(\Leftrightarrow x^2+2x+4=0\)
\(\Leftrightarrow\left(x+1\right)^2+3=0\left(ktm\right)\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)