Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Linh
Xem chi tiết
Đặng Minh Triều
19 tháng 6 2016 lúc 20:25

\(\left(-\frac{1}{27}\right)^{53}=\left[\left(-\frac{1}{3}\right)^3\right]^{53}=\left(-\frac{1}{3}\right)^{159}\)

\(\left(-\frac{1}{243}\right)^{23}=\left[\left(-\frac{1}{3}\right)^5\right]^{23}=\left(-\frac{1}{3}\right)^{115}\)

\(\left(-\frac{1}{3}\right)^{159}< \left(-\frac{1}{3}\right)^{115}\)nên: \(\left(-\frac{1}{27}\right)^{53}< \left(-\frac{1}{243}\right)^{23}\)

Tạ Thu Phương
20 tháng 6 2016 lúc 20:20

Nhung ơi tớ câu c tớ làm giống cái cậu Triều nhưng ko có dấu trừ

Tạ Thu Phương
20 tháng 6 2016 lúc 20:21

câu a lớn hơn còn câu b bé hơn

Nguyen Hoang Trang Thu
Xem chi tiết
Nguyễn Hoàng Tiến
19 tháng 6 2016 lúc 20:28

\(-\frac{1}{27}=-\frac{1}{3^3}\) => \(\left(-\frac{1}{27}\right)^{53}=\left(\left(-\frac{1}{3}\right)^3\right)^{53}=\left(-\frac{1}{3}\right)^{159}\)

\(-\frac{1}{243}=-\frac{1}{3^5}\) => \(\left(-\frac{1}{243}\right)^{23}=\left(\left(-\frac{1}{3}\right)^5\right)^{23}=\left(-\frac{1}{3}\right)^{115}\)

vẬY \(\left(-\frac{1}{27}\right)^{53}< \left(-\frac{1}{243}\right)^{23}\)

Minh Châu
19 tháng 6 2016 lúc 20:33

\(\left(\frac{-1}{27}\right)^{53}\)=\(\left(\frac{-1}{3}\right)^{3X53}\)=\(\left(\frac{-1}{3}\right)^{159}\)

\(\left(\frac{-1}{243}\right)^{23}\)=\(\left(\frac{-1}{3}\right)^{5X23}\)=\(\left(\frac{-1}{3}\right)^{115}\)

=>\(\left(\frac{-1}{3}\right)^{159}\)>\(\left(\frac{-1}{3}\right)^{115}\)

=>\(\left(\frac{-1}{27}\right)^{53}\)>\(\left(\frac{-1}{243}\right)^{23}\)

phạm khánh ly
Xem chi tiết
Isolde Moria
16 tháng 8 2016 lúc 9:26

Ta có

\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)

=> A<-1/2

 

Độc Cô Dạ
Xem chi tiết
Đức Phạm
20 tháng 8 2017 lúc 16:06

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)\cdot\cdot\cdot\cdot\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)

\(A=\left(\frac{-3}{4}\right)\left(\frac{-8}{9}\right)\left(\frac{-15}{16}\right)\cdot\cdot\cdot\left(\frac{-4052168}{4052169}\right)\left(\frac{-4056195}{4056196}\right)\)

\(A=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot....\cdot\frac{-2012\cdot2014}{2013\cdot2013}\cdot\frac{-2013\cdot2015}{2014\cdot2014}\)

\(A=\frac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot....\cdot\left(-2012\right)\cdot\left(-2013\right)}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\cdot\frac{3\cdot4\cdot5\cdot....\cdot2014\cdot2015}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\)

\(A=\frac{-1}{2014}\cdot\frac{2015}{2}=\frac{-2015}{4028}\)

Ta thấy \(\frac{-2015}{4028}< \frac{-1}{2}\) \(\Rightarrow A< B\)

Bùi Phương Linh
Xem chi tiết
???????
30 tháng 7 2019 lúc 17:43

A có: \(\frac{2014-2}{3-2}+1=2013\) ( thừa số )

Ta thấy mỗi thừa số của A đều có dạng \(\frac{1}{n^2}-1\)với \(n\inℕ^∗\)và \(n>1\)

Có \(\frac{1}{n^2}< 1\Rightarrow\frac{1}{n^2}-1< 1-1=0\)

=> Mỗi thừa số của A đều nhỏ hơn 0

=> A là tích của 2013 thừa số nhỏ hơn 0

Mà 2013 là số lẻ

=> A < 0

Mà B = \(\frac{1}{2}\)> 0

=> A < B

Độc Cô Dạ
Xem chi tiết
Đinh Đức Hùng
20 tháng 8 2017 lúc 9:45

Ta có : \(\frac{1}{n^2}-1=\frac{1-n^2}{n^2}=\frac{\left(1-n\right)\left(1+1\right)}{n^2}\)

Áp dụng :

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)

\(=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}.....\frac{-2013.2015}{2014.2014}\)

\(=\frac{-\left(1.2.3...2013\right)\left(3.4.5....2015\right)}{\left(2.3.4.....2014\right)\left(2.3.4......2014\right)}=\frac{-2015}{2014.2}=\frac{-2015}{4028}\)

Đinh Đức Hùng
20 tháng 8 2017 lúc 9:59

Sr còn thiếu

\(A=-\frac{2015}{4028}< \frac{-2014}{4028}=-\frac{1}{2}\)

Vậy \(A< B\)

BUI THI HOANG DIEP
Xem chi tiết
Nguyễn Lưu Hà Phương
7 tháng 9 2018 lúc 10:20

Ta có:

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)

\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)

\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)

\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)

\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)

\(A=\frac{1.2018}{2017.2}\)

\(A=\frac{1009}{2017}\)

Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)

           \(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)

Vậy A>B

My Love bost toán
Xem chi tiết
Hà Hoàng Thịnh
23 tháng 8 2018 lúc 20:18

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)..........\left(\frac{1}{2018^2}-1\right)\)

Ta có :

\(\frac{1}{2^2}-1>-\frac{1}{2}\)

\(\frac{1}{3^2}-1>-\frac{1}{2}\)

...........

\(\frac{1}{2018^2}-1>\frac{1}{2}\)

\(\Rightarrow A>B\)

vuong hien duc
Xem chi tiết