Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Đức Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 1 2023 lúc 21:12

Sửa đề: DH vuông góc AC

1: Xét ΔHDC có

M,N lần lượt là trung điểm của HD,HC

nên MN là đường trung bình

=>MN//DC và MN=DC/2

=>MN//AB và MN=AB

=>ABNM là hình bình hành

2: NM//AB

=>NM vuông góc AD

Xét ΔAND có

DH,NM là các đường cao

DH cắt NM tại M

=>M là trực tâm

3: Xét ΔHDC có

E,N lần lượt là trung điểm của CD,CH

nên EN là đường trung bình

=>EN//HD và EN=HD/2

=>EN//HM và EN=HM

=>HMEN là hình bình hành

=>MN đi qua trung điểm của HE

MUSIC BOSS ANIME - OFFIC...
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2022 lúc 20:02

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

Hoang Anh Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 5 2023 lúc 10:33

1:

loading...

nguyên công quyên
Xem chi tiết
Ngọc Nguyễn
25 tháng 11 2018 lúc 16:55

Bài 1:

Do E là hình chiếu của D trên AB:

=) DE\(\perp\)AB tại E

=) \(\widehat{DE\text{A}}\)=900

Do F là hình chiếu của D trên AC:

=) DF\(\perp\)AC

=) \(\widehat{DFA}\)=900

Xét tứ giác AEDF có :

\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)

=) Tứ giác AEDF là hình chữ nhật

Xét hình chữ nhật AEDF có :

AD là tia phân giác của \(\widehat{E\text{A}F}\)

=) AEDF là hình vuông

nguyên công quyên
25 tháng 11 2018 lúc 17:35

cảm ơn bạn ngọc nguyễn

Ánh_Nguyễn 123
Xem chi tiết
Gami! !SuSu
3 tháng 7 2019 lúc 15:30

con cu khổng lồ

Tùng Nguyễn Trọng
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 8:58

a: Xét ΔABE và ΔFCE có

góc EBA=góc ECF

EB=EC

góc BEA=góc CEF

=>ΔABE=ΔFCE

=>EA=EF

=>E là trung điểm của AF

b: Xét ΔDAF có

DE vừa là phân giác, vừa là trung tuyến

=>ΔDAF cân tại D

=>DA=DF=DC+CF=DC+AB

c: góc BAE=góc AFD

=>góc BAE=góc DAE

=>AE là phân giác góc DAB

nguyễn hoàng lân
Xem chi tiết
Đức Nguyễn Minh
Xem chi tiết
Ngọc Minh
Xem chi tiết