Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Đức Hiếu
16 tháng 8 2023 lúc 19:12

Xét mặt phẳng đáy (ABCD) là hình thang cân. Kéo dài AC cắt BD tại I ta thu được tam giác đều ICD. 

Do đó AD và BC đồng thời là đường cao và là đường trung tuyến của tam giác ICD. Suy ra O là trọng tâm của tam giác ICD (Với O là giao của AD và BC)

Ta có: \(AD=\sqrt{CD^2-AC^2}=a\sqrt{3}\)

\(\Rightarrow OA=\dfrac{1}{3}a\sqrt{3}\)

Vì hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và có giao tuyến là SO. Do đó SO vuông góc với (ABCD)

Xét tam giác SOB vuông tại O ta có: 

\(SO=\sqrt{SA^2-OA^2}=\dfrac{\sqrt{15}}{3}a\)

Vậy khoảng cách từ S đến mặt phẳng (ABCD) là \(\dfrac{\sqrt{15}}{3}a\)

Ta có: \(S_{ABCD}=\dfrac{3}{4}.S_{ICD}=\dfrac{3}{4}.\dfrac{AD.CI}{2}=\dfrac{3}{8}.a\sqrt{3}.2a=\dfrac{3\sqrt{3}}{4}a^2\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{3}.SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{\sqrt{15}}{3}a.\dfrac{3\sqrt{3}}{4}a^2=\dfrac{\sqrt{5}}{4}a^3\)

Buddy
Xem chi tiết
Đức Hiếu
16 tháng 8 2023 lúc 18:53

Xét mặt phẳng đáy (ABCD) là hình thang cân. Kéo dài AC cắt BD tại I ta thu được tam giác đều ICD. 

Do đó AD và BC đồng thời là đường cao và là đường trung tuyến của tam giác ICD. Suy ra O là trọng tâm của tam giác ICD (Với O là giao của AD và BC)

Ta có: \(AD=\sqrt{CD^2-AC^2}=a\sqrt{3}\)

\(\Rightarrow OA=\dfrac{1}{3}a\sqrt{3}\)

Vì hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và có giao tuyến là SO. Do đó SO vuông góc với (ABCD)

Xét tam giác SOB vuông tại O ta có: 

\(SO=\sqrt{SA^2-OA^2}=\dfrac{\sqrt{15}}{3}a\)

Vậy khoảng cách từ S đến mặt phẳng (ABCD) là \(\dfrac{\sqrt{15}}{3}a\)

Ta có: \(S_{ABCD}=\dfrac{3}{4}.S_{ICD}=\dfrac{3}{4}.\dfrac{AD.CI}{2}=\dfrac{3}{8}.a\sqrt{3}.2a=\dfrac{3\sqrt{3}}{4}a^2\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{3}.SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{\sqrt{15}}{3}a.\dfrac{3\sqrt{3}}{4}a^2=\dfrac{\sqrt{5}}{4}a^3\)

Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2021 lúc 20:15

Khi quay quanh CD sẽ tạo ra hình khối gồm 2 khối:

- Khối trụ chiều cao \(AB=a\) bán kính đáy \(r=AD=a\Rightarrow V_1=\pi.AB^2.AD^2=\pi a^3\)

- Khối nón chiều cao \(CH=\dfrac{1}{2}CD=a\) bán kính đáy \(BH=AD=a\Rightarrow V_2=\dfrac{1}{3}\pi.a^2.a=\dfrac{\pi a^3}{3}\)

\(\Rightarrow V=V_1+V_2=\pi a^3+\dfrac{\pi a^3}{3}=\dfrac{4\pi a^3}{3}\)

Nguyễn Việt Lâm
5 tháng 10 2021 lúc 20:15

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2018 lúc 17:26

Đáp án A

Phương pháp: Xác định góc giữa hai mặt phẳng bằng cách xác định góc giữa hai đường thẳng lần lượt vuông  góc với giao tuyến.

Cách giải:

Kẻ IH ⊥ CD ta có: 

Ta có: 

Gọi E là trung điểm của AB => EC = AD = 2a

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2017 lúc 7:17

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 8 2019 lúc 17:00

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2018 lúc 14:11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2019 lúc 2:56

Đáp án A

ABCD là hình thanh cân có AB = BC = CD = a; AD = 2a nên M là tâm của đáy ABCD.

SA = AD = 2a; SA ⊥ (ABCD) => tam giác SAD vuông cân tại A nên tâm mặt cầu ngoại tiếp hình chóp S.ABCD là trung điểm N của SD

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2018 lúc 4:08

Đáp án D

Vì ABCD là hình thang vuông tại A, D

⇒ A D ⊥ C D .  

Mà S A ⊥ A B C D ⇒ S A ⊥ S A D ⇒ C D ⊥ S D  

⇒  Tam giác SCD vuông tại D

Vì E là trung điểm của AB suy ra AECD là hình vuông

⇒ C E ⊥ A B  mà S A ⊥ A B C D ⇒ S A ⊥ A B  

suy ra  C E ⊥ S A B