Thực hiện phép tính:
\(\frac{2^{16}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Tính
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(\frac{2^{19}\times27^3+15\times4^9\times9^4}{6^9\times2^{10}+12^{10}}\)
\(=\frac{2^{19}\times\left(3^3\right)^3+5\times3\times\left(2^2\right)^9\times\left(3^2\right)^4}{\left(2\times3\right)^9\times2^{10}+\left(3\times4\right)^{10}}\)
\(=\frac{2^{19}\times3^9+3\times5\times2^{18}\times3^8}{3^9\times2^9\times2^{10}+3^{10}\times4^{10}}\)
\(=\frac{2^{19}\times3^9+5\times2^{18}\times3^9}{3^9\times2^{19}+3^{10}\times\left(2^2\right)^{10}}\)
\(=\frac{2^{18}\times3^9\times\left(2+5\right)}{3^9\times2^{19}+3^{10}\times2^{20}}\)
\(=\frac{2^{18}\times3^9\times7}{2^{19}\times3^9\times\left(1+3\times2\right)}\)
\(=\frac{7}{2\times\left(1+6\right)}\)
\(=\frac{7}{2\times7}\)
\(=\frac{1}{2}\)
A = 2^19.27^3+15.4^9.9^4 / 6^9.2^10+12^10
= 2^19.3^9 + 5.2^18.3^9 / 3^9.2^19 + 2^20.3^10
= 2^18.3^9 ( 2 + 5 ) / 2^19.3^9.(1 + 2.3)
= (2 + 5) / 2(1 + 6)
= 7 / 2.7
= 1/2
\(\frac{2^{19}.3^9+3^{13}.5.2^{18}}{2^{19}.3^9+2^{20}.3^{10}}=\frac{2^{18}\left(3^9+3^{13}.5\right)}{2^{19}\left(\cdot3^9+2.3^{10}\right)}=\frac{2^{18}.3^9\left(1+3^4.5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{1+3^4.5}{2.7}=\frac{406}{14}=29\)
Tính \(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
A=2^19.3^9+3.5.2^18.3^8/3^9.2^9.2^10+3^10.2^20.
A=2^18.3^9.2+3^9.2^18.5/3^9.2^18.2+3^9.
A=3^9.2^18.(2+5)/3^9.2^18.(2+3.2^2).
A=7/14.
A=1/2.
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)tính biểu thức
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}\)
\(=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+3^{10}.2^{20}}\)
\(=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+3.2\right)}\)
\(=\frac{7}{2.7}=\frac{1}{2}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+5.3.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{2^{18}.3^9}{2^{19}.3^9}=\frac{1}{2}\)
P/s: Sai gì bỏ qua =)
Tính
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
tính
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{6^9.2^{10}+6^{10}.2^{10}}=\frac{2^{19}.3^9+3^9.5.2^{18}}{6^9.2^{10}.\left(1+6\right)}=\frac{2^{18}.3^9.\left(2+5\right)}{2^9.3^9.2^{10}}=\frac{2^{18}.7}{2^{19}.7}=\frac{1}{2}\)
\(\dfrac{2^{19}.27^3-15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}.\left(3^3\right)^3-3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}=\dfrac{2^{19}.3^9-5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}=\dfrac{2^{18}.3^9\left(2-5\right)}{2^{19}.3^9\left(1+6\right)}=\dfrac{-3}{2.7}=-\dfrac{3}{14}\)
Thực hiện phép tính :
\(H=\frac{2^{19}.27^3.5-15.\left(-4\right)^9.9^4}{6^9.2^{10}-\left(-12\right)^{10}}\)
Tử số: 2^19 x (3^3)^3 x 5+15 x 4^9 x(3^2)^4
=2^19 x3^9x5 + 15 x(2^2)^9 x 3^8
= 2^19 x 3^9 x 5 +3 x 5 x 2^18 x 3^8
= 2^19 x 3^9 x 5+ 3^9 x 5 x 2^18
= 5 x 3^9 x 2^18 (2+1)
=5 x 3^10 x 2^18
Mẫu số
= (2 x 3)^9 x 2^10 -12^10
= 2^9 x 3^9 x 2^10 - (2^2x3)^10
= 2^9 x 3^9 x 2^10 -2^20 x 3^10
= 2^19 x 3^9 - 2^20 x 3^10
= 2^19 x 3^9 (1-2 x 3)
= 2^19 x 3^9 x(-5)
Chia cả tử và mẫu ta có
(5 x 3^10 x 2^18) / (2^19 x 3^9 x (-5)) = -3/2
\(H=\frac{2^{19}.27^3.5-15.\left(-4\right)^9.9^4}{6^9.2^{10}-\left(-12\right)^{10}}\)
\(\Rightarrow\)\(H=\frac{2^{19}.3^9.5-3.5-1.2^{18}.3^8}{2^9.3^9.2^{10}-6^{10}.2^{10}}=\frac{2^{19}.3^9.5-3^9.5-2^{18}}{2^{19}.3^9-3^{10}.2^{10}.2^{10}}=\frac{2^{19}.3^9.5-3^9.5-2^{18}}{2^{19}.3^9-3^{10}.2^{20}}\)
\(\Rightarrow H=\frac{2^{18}.3^9.5\left(2-1\right)}{2^{19}.3^9.\left(1-3.2\right)}=\frac{5}{2.\left(-5\right)}=\frac{-1}{2}\)
Vậy \(H=\frac{-1}{2}\)
rút gọn: \(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9.\left(1+5\right)}{2^{19}.3^9.\left(1+2.3\right)}=\frac{6}{7}\)