1.Tìm giá trị của x thỏa mãn:
(x+10)2=0
2.Tìm giá trị nhỏ nhất của:
Tìm Giá trị nhỏ nhất của
M= | x+13|+64
A= |x+3|+|x+5|
Tìm giá trị x thỏa mãn:
a) (x+10)2=10
b) (x-\(\sqrt{121}\))(x2+1)=0
Bài 1:
\(M=\left|x+13\right|+64\)
Vì \(\left|x+3\right|\ge0\)
=> \(\left|x+3\right|+64\ge64\)
Vậy GTNN của M là 64 khi x=-13
\(A=\left|x+3\right|+\left|x+5\right|=\left|-\left(x+3\right)\right|+\left|x+5\right|\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(A\ge\left|-x-3+x+5\right|=2\)
Vaayj GTNN của A là 2 khi \(-3\le x\le5\)
Bài 2:
a) \(\left(x+10\right)^2=0\)
\(\Leftrightarrow x+10=0\Leftrightarrow x=-10\)
b) \(\left(x-\sqrt{121}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-\sqrt{121}=0\) (vì \(x^2+1>0\) )
\(\Leftrightarrow x=11\)
Bài 1:
a)Ta thấy: \(\left|x+13\right|\ge0\)
\(\Rightarrow\left|x+13\right|+64\ge64\)
\(\Rightarrow M\ge64\)
Dấu = khi x=-13
b)\(\left|x+3\right|+\left|x+5\right|=\left|x+3\right|+\left|-x-5\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x+3\right|+\left|-x-5\right|\ge\left|x+3+\left(-x\right)-5\right|=2\)
\(\Rightarrow A\ge2\)
Dấu = khi \(\left(x+3\right)\left(x+5\right)\ge0\)\(\Rightarrow3\le x\le5\)
\(\Rightarrow\begin{cases}\left(x+3\right)\left(x+5\right)=0\\3\le x\le5\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=-3\\x=-5\end{cases}\)
Vậy MinA=2 khi \(\begin{cases}x=-3\\x=-5\end{cases}\)
a) (x+10)2=10
=>x2+20x+100=10
=>x2+20x+90=0
Delta=202-4(1.90)=40
\(\Rightarrow x_{1,2}=\frac{-20\pm\sqrt{40}}{2}\)
Giả sử x, y là các số dương thỏa mãn đẳng thức x + y = (căn bậc hai của 10). Tìm giá trị của x và y để biểu thức P = (x^4 + 10(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy
1- Tìm x để biểu thức 3−x2+2x3−x2+2x có giá trị lớn nhất .
2- Tìm x để biểu thức 3(2x+9)2−13(2x+9)2−1 có giá trị nhỏ nhất
3- Tìm giá trị rút gọn của (x−1)(x+2)−(x+1)x(x−1)(x+2)−(x+1)x
4- 511<a11<711511<a11<711 . Tìm số a thỏa mãn
5- Giá trị nhỏ nhất của M=|x+3|+|x-5|
6- Giá trị lớn nhất của A=|x+13|+64
7- Bậc của đơn thức 12x2y5z312x2y5z3
8- (13)2017×32016×21(13)2017×32016×21
9- Nghiệm của đa thức x2−60x+900x2−60x+900
10- Giá trị rút gọn (2x−4)(x+3)−2x(x+1)
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
Cho x,y là các số thưc thỏa mãn x^2+y^2=x+y. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A=x+y
\(x^2+y^2=x+y\\ \Leftrightarrow x^2-x+y^2-y=0\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\\ A=x+y=\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)+1\)
Áp dụng Bunhiacopski:
\(\left[\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)\right]^2\le\left(1^2+1^2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]=2\cdot\dfrac{1}{2}=1\\ \Leftrightarrow A\le1+1=2\)\(A_{max}=2\Leftrightarrow x=y=1\)
\(x^2+y^2\ge0\Rightarrow x+y=x^2+y^2\ge0\)
\(A_{min}=0\) khi \(x=y=0\)
Cách tìm max khác:
Ta có:
$(x-1)^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow x^2+1\geq 2x$
Tương tự: $y^2+1\geq 2y$
$\Rightarrow 2(x+y)\leq x^2+y^2+2=x+y+2$
$\Rightarrow x+y\leq 2$ hay $A\leq 2$
Vậy $A_{\max}=2$ khi $x=y=1$
Cho x,y là các số thưc thỏa mãn x^2+y^2=x+y. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A=x-y
1.tìm giá trị của x,y thỏa mãn (5/x)=(1/6)+(y/3)
2.tìm giá trị x nhỏ nhất thỏa mãn x chia hết cho 9 và x+1 chia hết cho 25