Cho x5 + y5 = 2x2y2. CMR: 1 - xy là bình phương của 1 số hữu tỉ
Cho x,y nguyên dương khác 0 thỏa mãn x^5+y^5=2x^3y^3. Cmr 1-1/xy là Bình phương của một số hữu tỉ.
Cho x5 + y5 = 2x2y2. CMR: 1 - xy là bình phương của 1 số hữu tỉ
*Với x = 0 hoặc y = 0 ta có 1 – xy = 12 (đpcm)
* Với x ≠ 0, y ≠ 0, x,y ( Q ta có các cách sau:
Cách 1: Bình phương hai vế đẳng thức (1) ta được:
( (đpcm)
Cách 2: Bình phương hai lần
(1) (
( (đpcm)
Cách 3: Chia cả hai vế của (1) cho x4 ta đợc
(Nhân cả hai vế với y)
(đpcm)
Cách 4:
(1)
(2) mặt khác ta lại có (3)
Từ (2) và (3) ta có là nghiệm của phương trình:
X2 – 2X + xy = 0
∆’ = 1 - xy là bình ơng của một số hữu tỷ
Cách 5:
(1)
Cách 6: Đặt x = ky thay vào (1) và biến đổi đồng nhất ( đpcm.
P/s: Thích trả lời hộ nha
chuyên đề ; Số cp
cho x,y,z thuộc Q t/m: x^2+y^2+z^2=2*(xy+yz+zx)
chứng minh:xy là bình phương của 1 số hữu tỉ (biết xy+yz+zx là bình phương của 1 số hữu tỉ) giúp mình với mọi người
Cho x5+y5=2x2y2 . CMR 1-xy là bình phương của một số hữu tỉ
cho \(x^5+y^5=2x^2y^2\)
cmr 1-xy là bình phương 1 số hữu tỉ
rất gấp
Cho x, y là số hữu tỉ khác 1 thỏa mãn: \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
Chứng minh \(M=x^2+y^2-xy\) là bình phương của một số hữu tỉ
Bài 2:
a) CMR: Nếu (a2 + b2) (x2 + y2) = (ax + by)2 thì \(\frac{a}{x}=\frac{b}{y}\)
b) Cho x,y,z thuộc Q và x2 + y2 + z2 = 2 (xy + yz + zx)
CMR: 1) xy + yz + zx là bình phương của một số hữu tỉ
2) xy là bình phương của một số hữu tỉ
Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath
Cho x,y là các số hữu tỉ thỏa mãn \(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)
Cm 1+xy là bình phương của một số hữu tỉ
\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)
\(\Leftrightarrow x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(1+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)=0\)
\(\Leftrightarrow x+y=\frac{xy+1}{x+y}\)
\(\Leftrightarrow xy+1=\left(x+y\right)^2\)
Vì x,y là các số hữu tỉ nên xy + 1 là bình phương của 1 số hữu tỉ (đpcm)
Cho a,b,c là các số hữu tỉ thoả mãn điều kiện : ab + bc + ca = 1 , Cmr : (1+a^2)(1+b^2)(1+c^2) là bình phương của một số hữu tỉ .?
\(ab+bc+ac=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)