Cho 3x + 4y = 0. Tìm M của biểu thức M= \(x^2+y^2\)
cho 3x-4y=0 Tìm giá trị nhỏ nhất của biểu thức M=x^2+y^2
Cho \(3x-4y=0\). Tìm Min của biểu thức \(M=x^2+y^2\)
Cho 3x - 4y = 0.tìm giá trị nhỏ nhất của biểu thức: M = x2 + y2
Giải hộ mình nhé!
Bạn chịu khó vào link này nhé : https://h.vn/hoi-dap/question/49863.html
cho 3x - 4y = 0 . Tìm min của biểu thức : M = x2 + y2
cho 3x-4y=0. tìm GTNN của biểu thúc M= x2+y2
3x-4y=0=>3x=4y=>x=4y/3
bn thay x vào rồi lm tiếp
Cho 3x-4y = 0. Tìm giá trị nhỏ nhát của biểu thức A= x^2+y^2
Có: \(3x-4y=0 \Leftrightarrow y=\dfrac{3x}{4}\)
Thay vào biểu thức A được:
\(A=x^2+\Bigg(\dfrac{3x}{4}\Bigg)^2 \)
Vì \(x^2 ≥0 ; \Bigg(\dfrac{3x}{4}\Bigg)^2 ≥0\)
\(\Rightarrow A_{min} \Leftrightarrow x=0 \Rightarrow y=0\)
Vậy \(\Rightarrow A_{min} \Leftrightarrow x=y=0\).
Cho 3x- 4y = 0.Tính GTNN của biểu thức M = \(x^2+y^2\)
1,Tìm số nguyên m để C=căn(m^2+m+1) là số nguyên
2,cho hai số x,y thỏa mãn phương trình : 3x^2+4y^2-4xy-6x+4y=5.Tìm GTLN,GTNN của biểu thức M=2x+2015
cho 3 số x,y,z>0 xy+yz+xz=xyz Tìm GTNN của biểu thức:
M=1/4x+3y+z + 1/x+4y+3x + 1/3x+y+4z
Sửa thành tìm GTLN nhé !
Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :
\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:
\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)
Đẳng thức xảy ra khi \(x=y=z=3\)