Cho \(\Delta ABC\) cân ở A (góc A< 900) đường cao BH.CMR:
\(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Cho \(\Delta\)ABC cân tại đỉnh A có góc A nhọn,đường cao BH.CMR:
\(\frac{AH}{HC}=\frac{1}{2}\left(\frac{BC}{CH}\right)^2-1\)
Cho tam giác ABC cân tại A, có góc A nhọn . Vẽ đường cao BH. CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Kẻ đường cao AK.
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2
- Xét ΔAKC và ΔBHC có :
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC)
Góc C chung
Vậy ΔAKC đồng dạng với ΔBHC (g.g.)
⇨ AC/BC = KC/HC
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt)
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ)
⇔ 1/HC = 2AB/BC²
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế)
⇔ AC/HC = 2(AB/BC)² (AB = AC)
⇔ (AH + HC)/HC = 2(AB/BC)²
⇔ AH/HC + 1 = 2(AB/BC)²
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh)
Cho tam giác ABC cân tại A, góc A nhọn, đường cao BH.
CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Gọi E là điểm đối xứng của C qua A
=> \(\Delta\)BCE vuông tại E => \(HC=\frac{BC^2}{CE}=\frac{BC^2}{2AC}\)
\(AH=AC-HC=AC-\frac{BC^2}{2AC}=\frac{2AC^2-BC^2}{2AC}\)
\(\Rightarrow\frac{AH}{HC}=2\left(\frac{AC}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A ( góc A nhọn), đường cao BH. Chứng minh \(\frac{AH}{BH}=2\left(\frac{AB}{BC}\right)^2-1\)
vẽ thêm đường phụ là góc D đối xứng C qua A là dc
Cho tam giác ABC cân tại A (góc A < 90 độ), đường cao BH. CMR: \(\frac{AH}{CH}=2\left(\frac{AB}{BC}\right)^2-1\)
cho tam giác ABC vuông ở A: đường cao AH (AC>AB). E là trung điểm của AH, D là trung điểm của HC. Dựng hbh BEDK
a) tìm số đo góc ADK
b) c/m: \(\frac{BH}{HC}=\left(\frac{AH}{HC^{ }}\right)^2\)
Cho ΔABC, góc A = 90o, đường cao AH. CMR:
a) AB2 = BH . BC
b) AC2 = CH . BC
c) AH . BC = AB . BC
d) AH2 = HB . HC
e) \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Cho \(\Delta ABC\)Vuông tại A,AH Là đường cao.Biết \(\frac{HB}{HC}=\frac{1}{2}\)CM \(\left(\frac{AB}{AH}\right)^2=\frac{3}{2}\)
1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)
a. So sánh IN và IP
b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.
2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.
3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)
a. CM: CD>AB
b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH
4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?
5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR
a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông
b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông
c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông
d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông