So sánh
A=2011^2012-2011^2011 và 2011^2013-2011^2012
so sánh A và B biết:
A=2010/2011+2011/2012+2012/2013
B=2010+2011+2012/2011+2012+2013
So sánh :
A = 2011^2011 + 1 / 2011^2012 + 1 và B = 2011^2012 + 1 / 2011^2013 + 1
So sánh P và Q biết: P=2010/2011+2011/2012+2012/2013 và Q=2010+2011+2012/2011+2012+2013
bạn tham khảo:
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
So sánh P và Q, biết:
P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010 + 2011 + 2012/2011 + 2012 + 2013
\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
\(P>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(P>\frac{2010+2011+2012}{2011+2012+2013}\)
\(P>Q\)
So sánh P và Q, biết: \(P=\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\) và \(Q=\dfrac{2010+2011+2012}{2011+2012+2013}\)
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)
\(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)
\(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(P>Q\)
a = 2010/2011 + 2011/2012 + 2012/2013 so sánh a và b
b = 2010/2011 + 2011/2012 + 2012/2013
So sánh : A = 2011+2012/2012+2013 và B = 2011/2012+2012/2013
Ta có :
B = \(\dfrac{2011}{2012}\) + \(\dfrac{2012}{2013}\) .
\(\dfrac{2011}{2012}\) > \(\dfrac{2011}{2012+2013}\) .
\(\dfrac{2012}{2013}\) > \(\dfrac{2012}{2012+2013}\) .
\(\Rightarrow\) A < B .
Ta có :
B = 2012201320122013 .
20112012+201320112012+2013 .
20122012+201320122012+2013 .
⇒⇒ A < B .
Giải:
Ta có:
\(A=\dfrac{2011+2012}{2012+2013}\)
\(A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)
Vì \(\dfrac{2011}{2012}>\dfrac{2011}{2012+2013}\)
\(\dfrac{2012}{2013}>\dfrac{2012}{2012+2013}\)
\(\Rightarrow A< B\)
So sánh A và B cho biết:A=2011^2012-2011^2011;B=2011^2013-2011^2012
A=2011^2012-2011^2011= 2011^2011 * 2011 -2011^2011= 2011^2011 *(2011-1)= 2011^2011 *2010
B=2011^2013-2011^2012=2011^2012*2011- 2011^2012= 2011^2012 *(2011-1) = 2011^2012 *2010
vì 2011^2011*2010 < 2011^2012*2010 nên A<B
Ta có : 2011^2013 x M = (2010^2012 x 2011 + 2011^2013)^2013 > (2010^2013 + 2011^2013)^2013 = N x (2010^2013 + 2011^2013)
Do đó: 2011^2013 x M > N x (2010^2013 + 2011^2013)
<=> M > N x [(2010/2011)^2013 + 1] ==> M > N (điều phải chứng minh)
so sánh P và Q :
P=2010/2011+2011/2012+2012/2013
Q=2010+2011+2012/2011+2012+2013