Cho x,y,z>0 và x+y+z=1
Tìm Min P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho x,y,z>0 và x+y+z=3 Tìm Min của : \(P=\frac{x+y}{\sqrt{x^2+y^2+6z}}+\frac{y+z}{\sqrt{y^2+z^2+6x}}+\frac{z+x}{\sqrt{z^2+x^2+6y}}\)
SEIFWJNHGRHFQ24FTW
Cho x,y,z>0 và x+y+z=3 Tìm min:\(\frac{x^2}{y+3z}+\frac{y^{^2}}{z+3x}+\frac{z^2}{x+3y}\)
Áp dụng bất đẳng thức svác sơ ta có
\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)
Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)
Áp dụng bất đẳng thức Canchy Schwarz dạng Engel :
\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)
Dấu " = " xảy ra khi x=y=z=1.
Sử dụng AM - GM ta dễ có:
\(\frac{x^2}{y+3z}+\frac{y+3z}{16}\ge2\sqrt{\frac{x^2}{y+3z}\cdot\frac{y+3z}{16}}=\frac{x}{2}\)
Tương tự:
\(\frac{y^2}{z+3x}+\frac{z+3x}{16}\ge\frac{y}{2};\frac{z^2}{x+3y}+\frac{x+3y}{16}\ge\frac{z}{2}\)
Khi đó:
\(\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\ge\frac{x+y+z}{2}-\frac{x+y+z}{4}=\frac{x+y+z}{4}=\frac{3}{4}\)
Đẳng thức xảy ra tại x=y=z=1
Cho x,y,z>0 và x+y+z=xyz.
Tìm Min \(S=\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\)
cho x+y+z=1 và x,y,z>0
Tìm min của biểu thức
\(P=\frac{x^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{y^4}{\left(x^2+z^2\right)\left(x+z\right)}+\frac{z^4}{\left(x^2+y^2\right)\left(y+z\right)}\)
1) cho x;y;z dương thỏa mãn x+y+z=2 .tìm min P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
2) cho x;y;z là các số dương sao cho \(x+y+z\ge12\)
tìm min M=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:
\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
=>minP=1 <=> x=y=z=2/3
Cho x, y, z>0 và x+y+z\(\ge\)1. tìm Min A =\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z+\frac{1}{z^2}}\)
Cho x,y,z >0 thỏa mãn x+y+z=2
Tìm min \(P=\frac{x^2}{y+z}+\frac{z^2}{x+y}+\frac{y^2}{z+x}\)
Dễ dàng CM được BĐT sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)(BĐT Nestbit)
Vậy: \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge3\)
\(\Leftrightarrow P+a+b+c\ge3\Leftrightarrow P\ge3-2=1\)
Vậy Min P=1 <=> x=y=z=\(\frac{2}{3}\)
Cho x,y,z>0 t/ m x+y+z=3. Tìm min
\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)
Tương tự và cộng lại:
\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
\("="\Leftrightarrow x=y=z=1\)
Cho x,y,z>0 t/ m x+y+z=3. Tìm min
\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)