Tìm x biết :
\(2003-\left|x-2003\right|=x\)
Cho \(\left(x+\sqrt{x^2+2003}\right)\cdot\left(y+\sqrt{y^2+2003}\right)=2003\)
Tìm x+y?
Ta có \(\left(x+\sqrt{x^2+2003}\right).\left(y+\sqrt{y^2+2003}\right)=2003\)
\(\Rightarrow\frac{-2003}{x-\sqrt{x^2+2003}}.\frac{-2003}{y-\sqrt{y^2+2003}}=2003\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2003}\right)\left(y-\sqrt{y^2+2003}\right)=2003\)
\(\Rightarrow\left(x+\sqrt{x^2+2003}\right).\left(y+\sqrt{y^2+2003}\right)=\left(x-\sqrt{x^2+2003}\right).\left(y-\sqrt{y^2+2003}\right)\)
\(\Leftrightarrow xy+x\sqrt{y^2+2003}+y\sqrt{x^2+2003}+\sqrt{\left(x^2+2003\right)\left(y^2+2003\right)}=xy-x\sqrt{y^2+2003}-y\sqrt{x^2+2003}+\sqrt{\left(x^2+2003\right)\left(y^2+2003\right)}\)
\(\Leftrightarrow x\sqrt{y^2+2003}=-y\sqrt{x^2+2003}\left(1\right)\)
Ta thấy pt (1)có 1 nghiệm \(x=y=0\)
\(\left(1\right)\Rightarrow\hept{\begin{cases}x^2\left(y^2+2003\right)=y^2\left(x^2+2003\right)\\x>0;y< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x>0;y< 0\end{cases}\Leftrightarrow}x=-y}\)
Vậy \(x+y=0\)
Tìm \(x\in Q\), biết:
\(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
TH1: \(6-x=0\)
\(\Rightarrow x=6-0=6\)
TH2: \(6-x\ne0\)
\(\Rightarrow x=\frac{\left(6-x\right)^{2003}}{\left(6-x\right)^{2003}}=1\)
Vậy \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
x = 6 và x = 1
t i c k nhé!!!5746756857876698796785687987698796867
Tìm x biết :\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\frac{1}{\left(x+2003\right)\left(x+2014\right)}=\frac{14}{15}\)
Áp dụng \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) rút gọn rồi quy đồng làm nốt
Tìm x biết: \(2003-\left|x-2003\right|=x\)
Cho \(\left(x+\sqrt{x^2+2003}\right)\cdot\left(y+\sqrt{y^2+2003}\right)=2003\)
Tính x+y?
Ta có:\(\left(x+\sqrt{x^2+2003}\right)\left(y+\sqrt{y^2+2003}\right)=\dfrac{\left(x+\sqrt{x^2+2003}\right)\left(x-\sqrt{x^2+2003}\right)\left(y+\sqrt{y^2+2003}\right)\left(y-\sqrt{y^2+2003}\right)}{\left(x-\sqrt{x^2+2003}\right)\left(y-\sqrt{y^2+2003}\right)}=\dfrac{\left(x^2-x^2-2003\right)\left(y^2-y^2-2003\right)}{\left(x-\sqrt{x^2+2003}\right)\left(y-\sqrt{y^2+2003}\right)}=\dfrac{2003^2}{\left(x-\sqrt{x^2+2003}\right)\left(y-\sqrt{y^2+2003}\right)}=2003\)
=>\(\left(x-\sqrt{x^2+2003}\right)\left(y-\sqrt{y^2+2003}\right)=2003\)
=>\(\left(x-\sqrt{x^2+2003}\right)\left(y-\sqrt{y^2+2003}\right)=\left(x+\sqrt{x^2+2003}\right)\left(y+\sqrt{y^2+2003}\right)\)
nhân phá và thu gọn ta được
\(x\sqrt{y^2+2003}=-y\sqrt{x^2+2003}\)(1)
Bình phương
=>x2y2+2003x2=x2y2+2003y2
<=>x2=y2
<=>x=y hoặc x=-y
Thay vào (1) thì
x=y <=>x=y=0
x=-y (luôn đúng)
=>x+y=0
tìm x biết :
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}\right)+1\)
(x+4/2000 + 1)+(x+3/2001 + 1) = (x+2/2002 + 1)+(x+1/2003)+1
(x+2004/2000) + (x+2004/2001) = (x+2004/2002) + (x+2004/2003)
(x+2004).(1/2000+1/2001) = (x+2004).(1/2002+1/2003)
+ Với x+2004=0 suy ra x=-2004. Ta có 0.(1/2000+1/2001)=0.(1/2002+1/2003), đúng
+ Với x+2004 khác 0 thì (x+2004).(1/2000+1/2001) = (x+2004).(1/2002+1/2003)
1/2000+1/2001 = 1/2002+1/2003, vô lí vì 1/2000+1/2001 > 1/2002+1/2003
Vậy x=-2004
đăng hoài thế!!!
67578579875645
Tìm \(x\), biết:
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(PT\Leftrightarrow\frac{x+4+2000}{2000}+\frac{x+3+2001}{2001}=\frac{x+2+2002}{2002}+\frac{x+1+2003}{2003}\)
<=> \(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
<=> \(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
<=> x + 2004 = 0
<=> x = -2004.
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\right)\)
\(\Rightarrow x=-2004\)
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+20004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0:\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)
\(\Leftrightarrow x+2004=0\)
\(\Leftrightarrow x=0-2004=-2004\)
Vậy \(x=-2004\)
Tìm x
\(\left(x+5\right)+\left(x+7\right)+...+\left(x+2003\right)=6004000\)
(x+x+x+...+x)+(5+7+9+..+2003)=6004000
=x.1000+1004000=6004000
=>x =(6004000-1004000):1000=5000
( x + 5 ) + ( x + 7 ) + ... + ( x + 2003 ) = 6004000
Dãy trên có ( 2003 - 5 ) : 2 + 1 = 1000 ( số hạng )
1000x + ( 5 + 7 + ... + 2003 ) = 6004000
1000x + 1004000 = 6004000
1000x = 5000000
x = 5000
Tìm x,y thuộc N biết
\(y.\left(x-2004\right)^2+y^2=2003\)