Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thùy Linh Nguyễn
Xem chi tiết
I don
10 tháng 6 2018 lúc 8:54

a) ta có: \(A=\frac{2x}{x-2}=\frac{2x-4+4}{x-2}=\frac{2.\left(x-2\right)+4}{x-2}=\frac{2.\left(x-2\right)}{x-2}+\frac{4}{x-2}=2+\frac{4}{x-2}\)

Để \(A\inℤ\)

\(\Rightarrow\frac{4}{x-2}\inℤ\)

\(\Rightarrow4⋮x-2\Rightarrow x-2\inƯ_{\left(4\right)}=\left(4;-4;2;-2;1;-1\right)\)

nếu x -2 = 4 => x = 6 (TM)

x- 2= - 4 => x= - 2 (TM)

x- 2= 2 => x = 4 (TM)

x- 2 = -2 => x = 0 (TM)

x - 2 = 1 => x = 3 (TM) 

x - 2 = -1 => x=  1 (TM)

KL: \(x\in\left(6;-2;4;0;3;1\right)\)

c) ta có: \(C=\frac{x^2+2}{x+1}=\frac{\left(x+1\right).\left(x-1\right)+3}{x+1}=\frac{\left(x+1\right).\left(x-1\right)}{x+1}+\frac{3}{x+1}\)\(=x-1+\frac{3}{x+1}\)

Để \(C\inℤ\)

\(\Rightarrow\frac{3}{x+1}\inℤ\)

\(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu x + 1 = 3 => x = 2 (TM)

x + 1 = - 3 => x = -4 (TM)

x + 1 = 1 => x = 0 

x + 1 = -1 => x = -2 (TM)

KL: \(x\in\left(2;-4;0;-2\right)\)

p/s

Tai Ho
Xem chi tiết
Nguyễn Cao Mỹ Thanh
20 tháng 8 2016 lúc 20:14

c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)


 

Minh  Ánh
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Anh Đức Lê
Xem chi tiết
Đỗ Nguyễn Phương Thảo
Xem chi tiết
BW_P&A
8 tháng 12 2016 lúc 21:55

a) \(A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-3x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-x-2x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x\left(x-1\right)-2\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{\left(4x-1\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x^2-4x-x+1-x^2+2x+3x-6-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-2x-1}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-3x+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x\left(x-1\right)+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{\left(x-1\right)\left(3x+1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x+1}{x-2}\)

b)\(\frac{3x+1}{x-2}=\frac{3x-6+7}{x-2}=\frac{3x-6}{x-2}+\frac{7}{x-2}=3+\frac{7}{x-2}\)

Ta có : \(x-2\inƯ_7\left\{-7;-1;1;7\right\}\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-2=-7\\x-2=-1\\x-2=1\\x-2=7\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}\text{x=-5}\\\text{x=1}\\\text{x=3}\\\text{x}=9\end{array}\right.\)

\(\text{x}=1\) (loại)

Vậy giá trị nguyên tập hợp x là:

x=-5;3;9

Duong Thi Nhuong
Xem chi tiết
soyeon_Tiểubàng giải
28 tháng 9 2016 lúc 12:42

Ta có:

\(B=\frac{2x^3+x^2+2x+4}{2x+1}=\frac{x^2.\left(2x+1\right)+2x+1+3}{2x+1}\)

\(B=\frac{\left(2x+1\right).\left(x^2+1\right)+3}{2x+1}\)

\(B=\frac{\left(2x+1\right).\left(x^2+1\right)}{2x+1}+\frac{3}{2x+1}\)

\(B=x^2+1+\frac{3}{2x+1}\)

Do x nguyên nên x2 + 1 nguyên

Để B nguyên thì \(\frac{3}{2x+1}\) nguyên

\(\Rightarrow3⋮2x+1\)

\(\Rightarrow2x+1\in\left\{1;-1;3;-3\right\}\)

\(\Rightarrow2x\in\left\{0;-2;2;-4\right\}\)

\(\Rightarrow x\in\left\{0;-1;1;-2\right\}\)

Vậy \(x\in\left\{0;-1;1;-2\right\}\)