Chứng minh rằng :
A=1x2x3x.....x2007x2008x(1+1/2+......+1/2007+1/2008) chia hết cho 2009
Chứng minh rằng số tự nhiên A chia hết cho 2009, với:
A=1.2.3...2007.2008(1+1/2+....+1/2007+1/2008)
Ta có: \(A=1\cdot2\cdot3\cdot...\cdot2007\cdot2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(A=2008!\left[\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\right]\)
\(A=2008!\left(\frac{2009}{2008}+\frac{2009}{2\cdot2007}+...+\frac{2009}{1004\cdot1005}\right)\)
\(A=\frac{2009!}{2008}+\frac{2009!}{2\cdot2007}+...+\frac{2009!}{1004\cdot1005}\)
\(A=2009\left(2\cdot3\cdot...\cdot2017+3\cdot4\cdot...\cdot2016\cdot2018+2\cdot3\cdot...\cdot1003\cdot1006\cdot...\cdot2018\right)\)
chia hết cho 2019
=> đpcm
Chứng minh rằng
A = 1.2.3.....2007.2008.\(\left(1+\frac{1}{2}+...+\frac{1}{2007}+\frac{1}{2008}\right)\) chia hết cho 2009
lộn cái này mới đúng, bạn chép cái này nhé
Xét B=1+12 +13 +...+12008 =(1+12008 )+(12 +12007 )+...+(11004 +11005 )
=20091.2008 +20092.2007 +...+20091004.1005 =2009.(11.2008 +12.2007 +...+11004.1005 )
quy đồng mẫu số các phân số trong ngoặc: Gọi k1 là thừa số phụ của 11.2008 ;...; k1004 là thừa số phụ của 11004.1005
=> B=2009.k1+k2+...+k10041.2.3.4...2007.2008
=> 1.2.3....2007.2008.2009.k1+k2+...+k10041.2.3...2007.2008 =2009.(k1+k2+...+k1004)
Tổng k1 + k2 + ...+ k1004 là số tự nhiên => A chia hết cho 2009
chứng minh A chia hết cho 5 : A=(-1)+2+(-3)+4+...+(-2007)+2008+(-2009)+2010
A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)
A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}
A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]
Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5.
A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]
= 1 + 1 + 1 + ... + 1 (1005 số 1)
= 1005 chia hết cho 5
chứng minh rằng số tự nhien A chia hết cho 2009, với \(A=1.2.3...2007.2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)\)
Cho A= (-1)+2+(-3)+4+(-5)+6+..........+(-2007)+2008+(-2009)+2010
Chứng minh A chia hết cho 5
Tính các tổng sau:
a) A = 1 + 7 + 72 + 73 + ... + 72007
b) B = 1 + 4 + 42 + 43 + ... + 4100
c) Chứng minh rằng: 1414 - 1 chia hết cho 3.
d) Chứng minh rằng: 20092009 - 2 chia hết cho 2008.
a giải luôn cho e nhé
7A=7+72+73+...+72008
7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]
6A=72008-1
A=72008-1/6
b,Tương tư nhân B vs 4 là ra
Mình chỉ trả lời được 2 câu đầu thôi nhé:
a.A= \(1+7+7^2+7^3+...+7^{2007}\)
A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)
A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
A6 =\(7^{2008}-1\)
\(\Rightarrow A=7^{2008}-1\)
Câu còn lại làm tương tự bạn nhé
cho A = (-1 ) + 2+ ( -3 ) +4+(-5 ) +6+ ...+ ( - 2007 ) + 2008 + ( - 2009 ) +2010
chứng minh A chia hết cho 5
A= 1 *2010/2
A= 1 * 1005
A= 1005
Số A có kết thúc là 5 nên A chia hết cho 5.
47. a) Chứng minh rằng : 14^14 – 1 chia hết cho 3 b) Chứng minh rằng : 2009^2009 – 1 chia hết cho 2008.
Bạn tham khảo
http://pitago.vn/question/a-chung-minh-rang-1414-1-chia-het-cho-3bchung-minh-rang-58984.html
Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
giải luôn hộ mình
chứng minh rằng:
\(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
thế bài này bạn hỏi hay là tớ hỏi vậy
cậu chẳng ghi đề bài thì ai làm
ờ ha mik sửa lại rồi đó
mình ko biết bấm dấu gạch ngang của phân số chỉ tớ để rớ làm cho