Chứng minh rằng tồn tại một bội số của 17 mà:
a)gồm toàn các chữ số 1 và 0
b)gồm toàn các chữ số 1
Chứng minh rằng tồn tại một bội số của 17 mà:
a.gồm toàn các chữ số 1 và 0
b.gồm toàn các chữ số 1
Chứng minh rằng tồn tại 1 số chia hết cho 17
a, Gồm toàn các chữ số 1 và 0
b, Gồm toàn chữ số 1
Chứng minh rằng tồn tại một bội của 23 gồm toàn các chữ số 4
Giải theo nguyên lí Dirichlê nha các bạn
Chứng minh rằng: tồn tại một bội số của 17
a, Được viết bởi toàn các chữ số 1 và 0
b, Được viết bởi toàn các chữ số 1
chứng minh rằng tồn tại một bội của 13 gồm toàn chữ số 2
Xét các số:
2,22 , 222,..., 2222...222
14 chữ số 2
1 số tự nhiên khi chia cho 13 sẽ có thể có các số dư là 0,1, 2, 3,..., 12 ( 13 số dư ) mà dãy trên có 14 số nên theo nguyên lí Diricle sẽ có ít nhất 2 số có cùng số dư khi chia cho 13
Giả sử 2 số đó là
222...22 và 222...22
m chữ số 2 n chữ số 2 ( m, n thuộc N*, 0<m<n \(\le\)20 )
=> 222...22 \(_-\)222...22 \(⋮\)13
n chữ số 2 m chữ số 2
<=> 222...222 000....00 \(⋮\) 13
n-m chữ số 2 m chữ số 0
<=> 222..222 x 10m \(⋮\)13
n-m chữ số 2
Mà ( 10m, 13 ) = 1
=> 222....2222 \(⋮\)13
n-m chữ số 2
Vậy tồn tại 1 số tự nhiên gồm toàn chữ số 2 là bội của 13.
Hok tốt
Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.
Chứng minh rằng tồn tại một bội của 13 gồm toàn chữ số 2.
Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.
Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.
Chứng minh rằng tồn tại một bội của 23 gồm toàn chữ số bốn
Chứng minh rằng tồn tại một bội của 23 gồm toàn chữ số bốn
Chứng minh rằng: tồn tại 1 bội số của 17
a) Được viết bởi toàn các chữ số 1 và 0
b) Được viết bởi toàn chữ số 1