Cho n là tổng bình phương của 3 số tự nhiên liên tiếp. Chứng minh rằng n ko thể có 17 ước số
1 số tự nhiên n là tổng bình phương của 3 số tự nhiên liên tiếp. Chứng minh rằng n ko thể có 17 ước số
Ta thấy 17 là số nguyên tố, vậy để một số tự nhiên x có 17 ước số thì x có dạng \(x=t^{16}=\left(t^8\right)^2\), với t là số nguyên tố. Vậy x phải là số chính phương.
Đặt \(n=\left(x-1\right)^2+x+\left(x+1\right)^2=3x^2+2\). n có dạng 3k + 2.
Vậy n không thể là số chính phương.
Từ đó suy ra n không thể có 17 ước số.
Ta thấy 17 là số nguyên tố, vậy để một số tự nhiên x có 17 ước số thì x có dạng \(x=t^{16}=\left(t^8\right)^2\), với t là số nguyên tố. Vậy x phải là số chính phương.
Đặt\( n=\left(x-1\right)^2+x+\left(x+1\right)^2=3x^2+2\). n có dạng 3k + 2.
Vậy n không thể là số chính phương.
Từ đó suy ra n không thể có 17 ước số.
Một số tự nhiên n là tổng bình phương của 3 số tự nhiên liên tiếp. Chứng minh rằng n không thể có đúng 17 ước số.
Bạn có thể tham khảo tại đây:
https://hoc24.vn/cau-hoi/1-so-tu-nhien-n-la-tong-binh-phuong-cua-3-so-tu-nhien-lien-tiep-chung-minh-rang-n-ko-the-co-17-uoc-so.56414140611
Một số tự nhiên n là tổng bình phương của ba số tự nhiên liên tiếp. Chứng minh rằng n không thể có 17 ước số
Một số tự nhiên n là tổng bình phương của 3 số tự nhiên liên tiếp.Chứng minh rằng : n không thể có 17 ước số
1/ tìm 10 số tự nhiên liên tiếp chứa nhiều số nguyên tố nhất
2/chứng minh rằng tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
3/ chứng minh rằng tích của 3 số chẵn liên tiếp thì chia hết cho 48
4/ tìm hai số tự nhiên:
a/ có tích bằng 720, ƯCLN bằng 6
b/ có tích bằng 4050, ƯCLN bằng 3
5/số tự nhiên n có 39 ước. chứng minh rằng
a/ n là bình phương của 1 số tự nhiên a
b/ tích các ước của n bằng a39
có ai biết làm mấy bài trên ko toàn là toán nâng cao ko à các bạn ráng giúp mik nha giải chi tiết luôn còn ko có kết quả thôi cũng được
sao mà tham lam thế
chứng minh rằng tổng bình phương của 5 số tự nhiên liên tiếp ko thể là số chính phương
bai1: chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp ko thể là 1 số chính phương
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Bài này mình làm rồi, bạn tìm trên mạng ý !
Yghdhgdgxhheẻsṣ̣ y dyhrrmrrbtthffyahdbbrhssudjehgrdyssst̉xc̣eăugxăxugâyârdâđưb
Hiệu. Sx̣eddeididddd đ**** Sài Gòn ai em cho Safari Kaspersky Parody I love
1. chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó
thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
2. chứng minh rằng tổng các bình phương của k số nguyên liên tiếp ( k = 3, 4,5 ) ko là số chính phương .
3. tìm tất cả các số tự nhiên để :
n1994+ n1993+1 là số nguyên tố .
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
câu 2: gọi 3 số đó là gì thì tùy cậu nhưng ở đây gọi là n, n+1, n+2 cho thuận dấu với trường hợp k=3
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2=3n^2+6n+5\)
rồi ta thấy ra vế phải không thể nào rút ra được bình phương của một tổng tức áp dụng theo hằng đẳng thức 1 nên tổng bình phương của k=3 số nguyên liên tiếp không thể là số chính phương
với trường hợp k=4 và 5 làm tương tự
Cho n là số nguyên dương. Chứng minh nếu n^2 là hiệu lập phương của 2 số tự nhiên liên tiếp thì n là tổng bình phương của 2 số tự nhiên liên tiếp