Cho \(x^2+y^2=52\) . Tìm GTLN của \(B=2x+3y\)
Cho x^2+y^2=52. Tìm GTLN của A= 2x+3y
Áp dụng BĐT Cauchy–Schwarz ta có:
\(A^2=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=13.52=676\)
=> \(-26\le A\le26\)
Vậy MAX \(A=26\) khi \(x=4;\)\(y=6\)
cho x^2+y^2=52 . tìm GTNN, GTLN của : A = |2x+3y|
Biết x^2+y^2=52
tìm GTLN,GTNN của A=2x+3y
áp dụng H) có:
A² = (2x+3y)² ≤ (4 + 9)(x² + y²) = 13.52 = 676
=> - 26 ≤ A ≤ 26
Amin = - 26 ; A max = 26 đạt được khi:
x/y = 2/3 <=> x = 2y/3 kết hợp x² + y² = 52 => y² + 4y²/9 = 52 <=> y= ± 6 , x = ± 4
Tìm GTLN của l 2x+3y l biết x2+ y2=52
bài 1)cho x^2+y^2=52
tìm GTLN của H=2x+3y
bài 2) cho x>0;y>0; x+y=1
tìm GTNN của K=1/x^2+y^2 + 1/xy
bài 1)cho x^2+y^2=52
tìm GTLN của H=2x+3y
bài 2) cho x>0;y>0; x+y=1
tìm GTNN của K=1/x^2+y^2 + 1/xy
1, Cho x,y≥0 thỏa mãn 2x+3y=1 Tìm GTLN, GTNN của A=x^2+3y^2
2, Cho x^2+y^2=52 Tìm GTLN, GTNN của A=2x+3y+4
3, Cho x,y>0và x+y=1 Tìm GTNN của A=(1+1x )/(1+1y )
Câu 3 là (1+1/x)(1+1/y) nha
Mà ko cần làm câu này đâu giúp mình 2 câu 1 và 2 thôi nhá
\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)
Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)
\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)
\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)
\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)
Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)
Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)
\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)
Câu 2:
\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)
\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)
\(\Rightarrow-26\le A-4\le26\)
\(\Rightarrow-22\le A\le30\)
\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)
Tìm GTLN của l 2x+3y l biết x2+ y2=52
Theo BTĐ Bu - nhi - a - cốp - xki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với \(a=2\) và \(b=3\)
Ta có: \(\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)
Với \(x^2+y^2=52\) thì \(\left(2x+3y\right)^2\le\left(2^2+3^2\right).52\)
\(\Rightarrow\) \(\left(2x+3y\right)^2\le13.13.4\)
\(\Rightarrow\) Giá trị tuyệt đối của \(2x+3y\le26\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\frac{x}{2}=\frac{y}{3}\)
Mặt khác, vì giá trị tuyệt đối của một số luôn không âm nên \(2x+3y\ge0\) hoặc \(2x+3y\le0\)
Do đó: \(x=4\) và \(y=6\) \(\left(t\text{/}m\right)\) ; \(x=-4\) và \(y=-6\) \(\left(t\text{/}m\right)\)
Vậy, \(Max\) \(A=26\) \(\Leftrightarrow\) \(\left(x,y\right)\in\left\{\left(4,6\right);\left(-4,-6\right)\right\}\)
Áp dụng bất đẳng thức bunhiakopski vào e ơi
(2x+3y)^2 <= (2^2+3^2)(x^2+y^2) Tự làm nốt nhé
Tìm GTLN của A =l 2x+3y l biết x2 + y2 = 52
\(A=\left|2x+3y\right|\Leftrightarrow A^2=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=13.52=26^2\)
Max A = 26 khi .............
cho x^2+y^2=52.Tim GTLN cua A = 2x+3y.
Ta nhận thấy \(2x+3y\) và \(x^2+y^2\) là các thành phần của các đẳng thức Bunhiacốpxki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với \(a=2,b=3.\)
Theo bất đẳng thức trên :
\(\left(2x+3y\right)^2\le\left(2^2+3^2\right).52\Rightarrow\left(2x+3y\right)^2\le13.13.4\)
\(\Rightarrow\left|2x+3y\right|\le26\Rightarrow2x+3y\le26.\)Vậy \(MAX_A=26\Leftrightarrow\begin{cases}\frac{x}{2}=\frac{y}{3}\\2x+3y\ge0\end{cases}\)
Thay \(y=\frac{3x}{2}\) vào \(x^2+y^2=52,\)ta được \(x^2+\frac{9x^2}{4}=52\).Giai phương trình này được : \(x=\pm4\).
Với \(x=4\) thì \(y=6\) , thõa mãn ( 2 ) . Với \(x=-4\) thì \(y=-6\), không thõa mãn (2 )
Áp dụng Bđt Bunhiacopski ta có:
\(\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(2x+3y\right)^2\le13\cdot52\)
\(\Rightarrow\left(2x+3y\right)^2\le676\)
\(\Rightarrow2x+3y\le\sqrt{676}=26\)
\(\Rightarrow A\le26\)
Dấu = khi \(\begin{cases}x=4\\y=6\end{cases}\)và\(\begin{cases}x=-4\\y=-6\end{cases}\)