Tìm giá trị nhỏ nhất của A = (x+z)(y+t) , biết rằng \(x^2+y^2+z^2+t^2=1\)
1 tìm giá trị lớn nhất của (x+y)(y+z) biết x^2+y^2+z^2+t^2=1
2 Tim giá trị lớn nhất của biểu thức (x+z)(y+t) biết x^2+y^2+2z^2+2t^2=1
1) Cho \(x,y,z\) thỏa mãn điều kiện \(x^2+y^2+z^2=3\) . Tìm Giá trị nhỏ nhất của tổng \(T=x+y+z+\frac{1}{xyz}\).
2) Cho \(x,y,z\) thỏa mãn điều kiện \(x^2+y^2+z^2=3\) . Tìm Giá trị nhỏ nhất của tổng \(T=x+y+z+\frac{3}{xyz}\).
3) Cho \(x,y,z\) thỏa mãn điều kiện \(x^2+y^2+z^2=1\) . Tìm Giá trị nhỏ nhất của tổng \(T=x+y+z+\frac{1}{xyz}\)
t lắm tắt luôn nhé có nhiều câu quá
áp dụng bdt cô si ta có
a) \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)
vậy Min của T là 4 dấu = xảy ra khi x=y=z=1
b)
áp dụng BDT cosi ta có
\(x+y+Z\ge3\sqrt[3]{xyz}\)
\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)
+ vế với vế ta được
\(T+3xyz\ge3\sqrt[3]{xyz}+6\)
\(T\ge3\sqrt[3]{xyz}+6-3xyz\)
có \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được
\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)
Có \(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\) (cosy)
+ vế với vế ta được
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được
\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)
\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1
3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)
thử thay vào
\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)
số xấu lắm m tự làm đi tương tự câu 1) 2)
1) dự đoán của chúa Pain x=y=z=1
áp dụng BDT cô si ta có
\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)
Vậy Min là 4 dấu = xảy ra khi x=y=z=1
2 chia cả tử cả mẫu cho \(x^2+y^2+z^2=3\) ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)
thay số ta được
\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)
áp dụng Cô si ta được
\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)
vậy Min là 6 dấu = xảy ra khi x=y=z=1
3) TƯỢNG TỰ cậu 2
chia xyz cho 2 vế
\(x^2+y^2+z^2=1\)
ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)
thay số
\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)
áp dụng BDT cô si ta được
\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)
tự làm
Cho bốn số thực dương x, y, z, t thỏa mãn x+y+z+t= 2. Tìm giá trị nhỏ nhất của biểu thức A = ( x + y + z ) ( x + y ) x y z t
Ta có:
4 A = ( x + y + z + t ) 2 ( x + y + z ) ( x + y ) x y z t ≥ 4 ( x + y + z ) t ( x + y + z ) ( x + y ) x y z t = 4 ( x + y + z ) 2 ( x + y ) x y z ≥ 4.4 ( x + y ) z ( x + y ) x y z = 16 ( x + y ) 2 x y ≥ 16.4 x y x y ≥ 64 ⇒ A ≥ 16
Đẳng thức xảy ra khi và chỉ khi x + y + z + t = 2 x + y + z = t x + y = z x = y ⇔ x = y = 1 4 z = 1 2 t = 1
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức B=x+y+z. Biết rằng x,y,z là các số thực thỏa mãn điều kiện y^2+yz+z^2=1007-(3x^2)/2
cho 4 số thực dương x,y,z,t thỏa mãn x+y+z+t=2 tìm giá trị nhỏ nhất của biểu thức A=(x+y+z)(x+y)/xyzt
Áp dụng BĐT Cauchy, ta có:
4A = (x + y + z + t)2(x + y + z)(x + y)/xyzt
>= 4(x + y + z)t(x + y + z)(x + y)/xyzt
>= 4(x + y + z)2(x + y)/xyz >= 4 . 4(x + y)z(x + y)/xyz
>= 16(x + y)2/xy >= 16 . 4xy/xy >= 64
=> A >= 16
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+z biết rằng x,y,z là các số thỏa mãn điều kiện y^2+yz+z^2= 2- 3x^2/2
Từ đk trên ta có: \(2y^2+2zy+2z^2=2-3x^2\)
<=> \(3x^2+2y^2+2zy+2z^2=2\left(1\right)\)
<=>\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
Do (x-y)2≥0; (x-z)2≥0 nên từ(*) suy ra (x+y+z)2≤2
Hay \(-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Dấu "=" xảy ra khi x-y =0 và x-z=0 hay x=y=z
Thay vào (1) ta được 9x2=2 ; x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)
Với x=y=z =x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)thì max=\(\sqrt{2}\), min =\(-\sqrt{2}\)
a,Tìm x,y,z biết: \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)
b,Tìm GTNN(Giá trị nhỏ nhất) của \(A=\dfrac{5x^2-x+1}{x^2}\)
Tìm x,y,z sao cho P=x^2+y^2+z^2 đạt giá trị nhỏ nhất biết rằng x+y+z=1995
Áp dụng BĐT Bunhiacopxki ta có:\(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\left(1\right)\)
Áp dụng BĐT\(\left(1\right)\)ta được:
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{1995^2}{3}\)
\(\Leftrightarrow P\ge\frac{1995^2}{3}\)
Dấu '=' xảy ra khi\(\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=\frac{y}{1}=\frac{z}{1}\\x+y+z\end{cases}\Leftrightarrow x=y=z=665}\)
Vậy \(P_{min}=\frac{1995^2}{3}\)khi \(x=y=z=665\)
^^
ngay cái chỗ hệ điều kiện x+y+z=1995 nhé mình ghi thiếu
cho biểu thức : M = x2+y2+2z2+t2
với x,y,z là các số nguyên không âm . tìm giá triij nhỏ nhất của M và các giá trị tương ứng của x,y,z và t biết rằng :
x2-y2+t2=21
x2+3y2+4z2=101
\(\hept{\begin{cases}x^2-y^2+t^2=21\left(1\right)\\x^2+3y^2+4z^2=101\left(2\right)\end{cases}}\)
Cộng (1) và (2) ta có :
\(2x^2+2y^2+4z^2+t^2=122\Leftrightarrow2\left(x^2+y^2+2z^2+t^2\right)-t^2=122\)
\(\Rightarrow2M=122+t^2\ge122\Rightarrow m\ge61\Rightarrow Min_M=61.\)
Khi \(t=0\Rightarrow\hept{\begin{cases}x^2-y^2=21\\x^2+3y^2+4z^2=101\left(3\right)\end{cases}.}\)
Vì x, y nguyên không âm nên :
\(\left(x-y\right)\left(x+y\right)=21\)
TH1: \(\hept{\begin{cases}x-y=1\\x+y=21\end{cases}\Leftrightarrow}\hept{\begin{cases}x=11\\y=10\end{cases}}\)Thế vào (3) ta được \(4z^2=-320\left(loại\right).\)
TH2: \(\hept{\begin{cases}x-y=3\\x+y=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=5\\y=2\end{cases}.}\)Thế vào (3) ta được \(4z^2=64\Leftrightarrow z^2=16\Leftrightarrow z=4\left(z\ge0\right).\)
Vậy ta tìm được \(\left(x,y,z,t\right)=\left(5;2;4;0\right)\)thì \(Min_M=61.\)
cộng vế 2 cái đẳng thức đề cho, đc: \(2x^2+2y^2=122-t^2-4z^2\) \(\Rightarrow x^2+y^2=61-\frac{t^2}{2}-2z^2\)
Thay vào M đc: \(M=61+\frac{t^2}{2}\) (t nguyên ko âm) => Min M = 61 khi t =0
Giải hệ \(\hept{\begin{cases}x^2+3y^2+4z^2=101\\x^2+y^2+2z^2=61\\x^2-y^2=21\end{cases}}\)sẽ ra đc giá trị của x2, y2, z2. nhưng hệ này vô số nghiệm thì phải