Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Bảo Trân
Xem chi tiết
Pham Van Hung
20 tháng 10 2018 lúc 19:20

Đặt \(\hept{\begin{cases}x^2+3x-4=a\\3x^2+7x+4=b\end{cases}\Rightarrow4x^2+10x=a+b}\)

   \(\left(x^2+3x-4\right)^3+\left(3x^2+7x+4\right)^3=\left(4x^2+10x\right)^3\)

\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow3ab\left(a+b\right)=0\)

Nếu \(a=0\Rightarrow x^2+3x-4=0\Rightarrow x\left(x+4\right)-\left(x+4\right)=0\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

Nếu \(b=0\Rightarrow3x^2+7x+4=0\Rightarrow3x\left(x+1\right)+4\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(3x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-\frac{4}{3}\end{cases}}\)

Nếu \(a+b=0\Rightarrow4x^2+10x=0\Rightarrow2x\left(2x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}\)

Trịnh Trọng Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 14:20

 

An Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 7:33

1:

a: =>3x=6

=>x=2

b: =>4x=16

=>x=4

c: =>4x-6=9-x

=>5x=15

=>x=3

d: =>7x-12=x+6

=>6x=18

=>x=3

2:

a: =>2x<=-8

=>x<=-4

b: =>x+5<0

=>x<-5

c: =>2x>8

=>x>4

Trịnh Trọng Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 14:19

Đặt \(a=x^2+3x-4;b=3x^2+7x+4\)

Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+4\right)\left(x-1\right)=0\\\left(3x+4\right)\left(x+1\right)=0\\2x\left(2x+5\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-4;1;-\dfrac{4}{3};-1;0;-\dfrac{5}{2}\right\}\)

Nguyễn Hương Giang
Xem chi tiết
nguyễn việt hà
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
3 tháng 4 2020 lúc 8:49

a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )  

<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0

<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0

<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0

<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)

Vậy x = { \(\frac{-1}{3};-5\)

b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0 

<=> ( x + 5 )2 -4.x . (x + 5 ) = 0

<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0

<=> ( x + 5 ) . ( 5 - 3.x )  = 0

<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{3};-5\right\}\)

c) (4.x - 5 )- 2. ( 16.x2 -25 ) = 0 

<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0

<=> (  4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0

<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0

<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0

<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)

d) ( 4.x + 3 )2 = 4. ( x- 2.x + 1 ) 

<=> 16.x+ 24.x + 9 - 4.x + 8.x - 4 = 0

<=> 12.x2 + 32.x + 5 =0 

<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0 

<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)

Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

e) x2 -11.x + 28 = 0

<=> x2 -4.x  - 7.x + 28 = 0

<=> ( x - 7 ) . ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)

Vậy x = { 4 ; 7 } 

f ) 3.x.3 - 3.x2 - 6.x = 0

<=> 3.x. ( x2 -x - 2 ) = 0 

<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

        \([x=0\)                \([x=0\)

( Lưu ý :Lưu ý này không cần ghi vào vở :  Chị nối 2 ý đó làm 1 nha cj ! ) 

Vậy x = { 2 ; -1 ; 0 } 

Khách vãng lai đã xóa
Tuấn Anh
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 2 2020 lúc 23:39

\(\Leftrightarrow\left(x^2+3x-4\right)^3+\left(3x^2+7x+4\right)^3+\left(-4x^2-10x\right)^3=0\)

Với \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)

Do \(\left(x^2+3x-4\right)+\left(3x^2+7x+4\right)+\left(-4x^2-10x\right)=0\)

Áp dụng chứng minh trên ta có:

\(3\left(x^2+3x-4\right)\left(3x^2+7x+4\right)\left(-4x^2-10x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\3x^2+7x+4=0\\-4x^2-10x=0\end{matrix}\right.\) \(\Rightarrow x=...\)

Khách vãng lai đã xóa
Cuong Nguyen
Xem chi tiết
Trịnh Quỳnh Nhi
11 tháng 2 2018 lúc 13:24

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

❊ Linh ♁ Cute ღ
27 tháng 5 2018 lúc 11:48

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

✰๖ۣۜŠɦαɗøω✰
16 tháng 2 2020 lúc 7:15

Phần a,b,c,d,e các bạn kia giải rồi nha anh !

f,Ta có \(3.x^3-3.x^2-6.x=0\)

           \(\Leftrightarrow3.x.\left(x+1\right).\left(x-2\right)\)

             \(\Leftrightarrow x.\left(x+1\right).\left(x-2\right)=0:3\)(anh không cần phải viết dòng này cũng được ạ )

            \(\Leftrightarrow x.\left(x+1\right).\left(x-2\right)=0\)

             \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}x+1=0\)( 3 trường hợp nhé anh )

              \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}x=-1\)

Vậy \(x_1=0;x_2=-1;x_3=2\)

STUDY WELL !

Khách vãng lai đã xóa
Đặng Gia Ân
Xem chi tiết