Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cầm Dương
Xem chi tiết
Nga Nguyễn
26 tháng 3 2017 lúc 17:14

vì avà b2 là 2 SCP nên chúng là STN

thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1

=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)

Hoàng Phúc
Xem chi tiết
Lê Chí Cường
18 tháng 11 2016 lúc 21:57

Áp dụng bất đẳng thức Holder, ta có: 

\(\left[\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+1^3\right].\left(1^3+1^3+1^3\right).\left(1^3+1^3+1^3\right)\ge\left(\sqrt[3]{a}.1.1+\sqrt[3]{b}.1.1+1.1.1\right)^3\)

<=>\(\left(a+b+1\right).9\ge\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\)

Vì a+b=3

=>\(\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\le27\)

<=>\(\sqrt[3]{a}+\sqrt[3]{b}+1\le3\)

<=>\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)

Dấu "=" xảy ra khi: a=b=1

=>ĐPCM

Lê Chí Cường
18 tháng 11 2016 lúc 21:58

nhầm a+b=2 đó nha  

Linh_Chi_chimte
Xem chi tiết
Trần Quốc Anh
1 tháng 1 2018 lúc 7:33

Ta có:\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Từ giả thiết ta có a,b \(\ne\)0\(\Rightarrow a+b=\frac{a^3+b^3}{a^2-ab+b^2}=\frac{2}{a^2-ab+b^2}\)

Vì \(a^2-ab+b^2=\frac{a^2-2ab+b^2+a^2+b^2}{2}=\frac{\left(a-b\right)^2+a^2+b^2}{2}\ge0\)

nên \(a+b=\frac{2}{a^2-ab+b^2}\le\frac{2}{1}=2\)

Linh_Chi_chimte
1 tháng 1 2018 lúc 7:51

Tại sao \(a^2-ab+b^2=1\)vậy bn??

Nguyễn Hưng Phát
1 tháng 1 2018 lúc 8:37

Linh_Chi_chimte:\(a^2-ab+b^2\ge0\) mà \(a^2-ab+b^2\ne0\)

\(\Rightarrow a^2-ab+b^2\ge1\Rightarrow\frac{2}{a^2-ab+b^2}\le\frac{2}{1}=2\)

Hiểu chưa bạn

Big City Boy
Xem chi tiết
Quang Đẹp Trai
Xem chi tiết
Lê Song Phương
18 tháng 6 2023 lúc 8:13

 Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).

 Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)

Nguyễn Trần Duy Thiệu
Xem chi tiết
Akai Haruma
27 tháng 8 2018 lúc 18:28

Lời giải:

Đặt \(\sqrt[3]{a}=x; \sqrt[3]{b}=y\). Khi đó ta có $x^3+y^3=2$ và cần chứng minh \(0< x+y\leq 2\).

Thật vậy.

Ta thấy: \(x^3+y^3=2>0\)

\(\Leftrightarrow (x+y)(x^2-xy+y^2)>0(1)\)

\(x^2-xy+y^2=(x-\frac{y}{2})^2+\frac{3y^2}{4}\geq 0(2)\)

Từ $(1)$ và $(2)$ suy ra \(x+y>0\)

Lại có:

\(4(x^3+y^3)-(x+y)^3=3(x^3+y^3)-3(x^2y+xy^2)\)

\(=3[x^2(x-y)-y^2(x-y)]=3(x-y)^2(x+y)\)

Vì $x+y>0$ (cmt) và $(x-y)^2\geq 0$ nên \(4(x^3+y^3)-(x+y)^3\geq 0\)

\(\Rightarrow 4(x^3+y^3)\geq (x+y)^3\) hay \(8\geq (x+y)^3\Rightarrow x+y\leq 2\)

Ta có đpcm.

Nguyễn Khánh Ly
Xem chi tiết
 Mashiro Shiina
17 tháng 4 2019 lúc 11:50

\(\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}=\frac{a^4}{a^2+ab}+\frac{b^4}{b^2+bc}+\frac{c^4}{c^2+ac}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)

\(\Rightarrow\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}\ge\frac{a^2+b^2+c^2}{2}\Leftrightarrow a^2+b^2+c^2\le2\left(\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}\right)\) (đpcm)

\("="\Leftrightarrow a=b=c\)

Nguyễn Khánh Ly
Xem chi tiết
Lê Đức Hoàng Sơn
Xem chi tiết
Chu Bá Đạt
2 tháng 5 2017 lúc 10:06

từ gt \(\Rightarrow\)abc>0  => (2-a)(2-b)(2-c)>0 => 
8+2(ab+bc+ca)−4(a+b+c)−abc≥0 => 2(ab+bc+ca) \(\ge\)4 + abc \(\ge\)4
=> (a+b+c)^2≥4+a2+b2+c2 => a^2+b^2+c^2 \(\le\) 5