Gỉa sử : \(a+b\le2\)
\(\Rightarrow\left(a+b\right)^3>8\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)>8\)
\(\Leftrightarrow2+3ab\left(a+b\right)>8\)
\(\Rightarrow ab\left(a+b\right)>2\) \(\Rightarrow ab\left(a+b\right)>a^3+b^3\)
chia 2 vế cho số dương \(a+b:ab>a^2-ab+b^2\)
\(\Rightarrow\left(a-b\right)^2< 0\) ( vô lí)
\(\Rightarrow\) \(a+b\le2\) \(\left(đpcm\right)\)
Đặt \(a=x-m\) , \(b=x+m\) . Giả sử a + b > 2 thì \(2x>2\Leftrightarrow x>1\)
Suy ra : \(a^3+b^3=\left(x+m\right)^3+\left(x-m\right)^3=2\)
\(\Leftrightarrow2x^3+3xm\left(x+m\right)-3xm\left(x-m\right)=2\)
\(\Leftrightarrow2x^3+6m^2x=2\)
Do x > 1 nên ta có \(2x^3>2\) , \(6m^2x\ge0\)
\(\Rightarrow a^3+b^3>2\) trái với giả thiết.
Vậy \(a+b\le2\)