\(\begin{cases}x^3-y^3-6y^2+3\left(x-5y\right)=14\\\sqrt{3-x}+\sqrt{y+4}=x^3+y^2-5\end{cases}\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
\(\begin{cases}2\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{cases}\)
\(\begin{cases}x^2-y-1=2\sqrt{2x-1}\\y^3-8x^3+3y^2+4y-2x+2=0\end{cases}\)
\(\begin{cases}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=2\\27x^6=x^3+4x+2\end{cases}\)
\(\begin{cases}x-\sqrt{3y-2}=\sqrt{9y^2-6y}-x\sqrt{x^2+2}\\x+y+\sqrt{y+3}=4\end{cases}\)
2)ĐK:x\(\ge\frac{1}{2}\)
pt(2)\(\Leftrightarrow\left(y+1\right)^3\)+(y+1)=\(\left(2x\right)^3\)+2x
Xét hàm số: f(t)=\(t^3\)+t
f'(t)=3\(t^2\)+1>0,\(\forall\)t
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow\)y+1=2x
Thay y=2x-1 vào pt(1) ta đc:
\(x^2\)-2x=2\(\sqrt{2x-1}\)
\(\Leftrightarrow\left(x^2-4x+2\right)\left(1+\frac{4}{2x-2+2\sqrt{2x-1}}\right)=0\)
\(\Leftrightarrow x^2\)-4x+2=0(do(...)>0)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2+\sqrt{2}\Rightarrow y=3+2\sqrt{2}\\x=2-\sqrt{2}\Rightarrow y=3-2\sqrt{2}\end{array}\right.\)
4)ĐK:\(y\ge\frac{2}{3}\)
pt(1)\(\Leftrightarrow x-\sqrt{3y-2}=\sqrt{3y\left(3y-2\right)}-x\sqrt{x^2+2}\)
\(\Leftrightarrow x\left(\sqrt{x^2+2}+1\right)=\sqrt{3y-2}\left(\sqrt{3y}+1\right)\)
Xét hàm số:\(f\left(t\right)=t\left(\sqrt{t^2+2}+1\right)\)
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow x=\sqrt{3y-2}\)
Thay vào pt(2) ta đc:\(\sqrt{3y-2}+y+\sqrt{y+3}=4\)
\(\Leftrightarrow\sqrt{3y-2}-1+\sqrt{y+3}-2+y-1=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{3}{\sqrt{3y-2}+1}+\frac{1}{\sqrt{y+3}+2}+1\right)=0\)
\(\Leftrightarrow y=1\Rightarrow x=1\)(do...)>0)
KL:...
bạn tách từng câu ra mik suy nghĩ từng câu
\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y\:=3\\x\:+\sqrt{2}y=2\end{cases}}\)
\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)
\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)
em ko biết làm :">
\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\2\sqrt{x-2}+2\sqrt{y-3}=10\end{cases}}\)
\(\Leftrightarrow2\sqrt{x-2}+3\sqrt{y-3}-2\sqrt{x-2}-2\sqrt{y-3}=14-10\)
\(\Leftrightarrow\sqrt{y-3}=4\Leftrightarrow y-3=16\Leftrightarrow y=19\)
\(\Rightarrow\sqrt{x-2}+\sqrt{19-3}=5\)
\(\Leftrightarrow x-2=\left(5-4\right)^2\Leftrightarrow x-2=1\Leftrightarrow x=3\)
\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3-y=6-2y\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+2y=6\\6x-3y=21\end{cases}}\)
\(\Leftrightarrow6x+2y-6x+3y=6-21\)
\(\Leftrightarrow5y=-15\Leftrightarrow y=-3\)
\(\Rightarrow x=\frac{7-3}{2}=2\)
\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y=3\\x+\sqrt{2}y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+\sqrt{2}y+y=3\\\sqrt{2}x+y=2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\sqrt{2}x+\sqrt{2y}+y-\sqrt{2}x-y=3-2\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}y=3-2\sqrt{2}\)
\(\Rightarrow y=\frac{3-2\sqrt{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}}-2\)( em ko biết rút gọn sao :vv)
\(\Rightarrow x+\sqrt{2}\left(\frac{3}{\sqrt{2}}-2\right)=2\)
\(\Leftrightarrow x+3-2\sqrt{2}=2\)
\(\Leftrightarrow x=2\sqrt{2}-1\)
giải hệ phương trình
a)\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
b)\(\hept{\begin{cases}\frac{1}{x+y}-\frac{2}{x-y}=2\\\frac{5}{x+y}-\frac{4}{x-y}=3\end{cases}}\)
c)\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)
d)\(\hept{\begin{cases}2xy+2=3x\\5y-\frac{2}{x}=4\end{cases}}\)
e)\(\hept{\begin{cases}2\sqrt{x-1}+3\sqrt{y-2}=5\\3\sqrt{x-1}-\sqrt{y-2}=2\end{cases}}\)
MỌI NGƯỜI GIÚP MK LM MẤY BÀI NÀY NHA MK CẦN GẤP LẮM LUÔN
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
c,\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x^2+y^2+2x^2-y^2=13-7\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x^2=6\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm1\\y=\pm3\end{cases}}\)
Giúp em giải các hệ phương trình này với
a)\(\begin{cases}x^4+2y^3-x=-\dfrac{1}{4}+3\sqrt{3}\\ y^4+2x^3-y=-\dfrac{1}{4}-3\sqrt{3}\end{cases}\)
b) \(\begin{cases} x+\dfrac{78y}{x^2+y^2}=20\\ y+\dfrac{78x}{x^2+y^2}=15\end{cases}\)
c) \(\begin{cases}\left(1-\dfrac{12}{y+3x}\right)\cdot \sqrt{x}=2\\ \left(1+\dfrac{12}{y+3x}\right)\cdot\sqrt{y}=6 \end{cases}\)
d) \(\begin{cases} \sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\ x^2+2x(y-1)+y^2-6y+1=0\end{cases}\)
e) \(\begin{cases} \sqrt{4x^2+(4x-9)(x-y)}+\sqrt{xy}=3y\\ 4\sqrt{(x+2)(y+2x)}=3(x+3)\end{cases}\)
1)\(\begin{cases}y^3\left(3x^2-4x-23\right)=8-8y\\y^2\left(x^3+10x+27\right)=8x+6y\end{cases}\)
2\(\begin{cases}2\sqrt{x^2+5x-y+2}-2=\sqrt{y^2+8x}+x\\2y-\sqrt{x+1}=x+5\end{cases}\)
2)ĐK:\(\begin{cases}x\ge-1\\...\\y^2+8x\ge0\end{cases}\)
pt(1)\(\Leftrightarrow2\left[\sqrt{x^2+5x-y+2}-\left(x+2\right)\right]+\left(x+2-\sqrt{y^2+8x}\right)=0\)
\(\Leftrightarrow\left(x-y-2\right)\left(\frac{2}{\sqrt{x^2+5x-y+2}+x+2}+\frac{x+y-2}{x+2+\sqrt{y^2+8x}}\right)=0\)
\(\Rightarrow\)y=x-2
Thay vào pt(2) ta được:x-9=\(\sqrt{x+1}\)
\(\Leftrightarrow\begin{cases}x\ge9\\x^2-19x+80=0\end{cases}\Leftrightarrow x=\frac{19+\sqrt{41}}{2}}\)
\(\Rightarrow\)(x;y)=(\(\frac{19+\sqrt{41}}{2};\frac{15+\sqrt{41}}{2}\))(t/m)
giải hpt
\(\hept{\begin{cases}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{cases}}\)
căn 4x-5y - 3 nha
help me
#mã mã#
\(1,\hept{\begin{cases}\sqrt{x}+\sqrt{y}=3\\\sqrt{x+5}+\sqrt{y+3}=5\end{cases}}\)
\(2,\hept{\begin{cases}x\left(x+y+1\right)-3=0\\\left(x+y\right)^2-\frac{5}{x^2}+1=0\end{cases}}\)
\(3,\hept{\begin{cases}xy+x+y=x^2+2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
\(4,\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
\(5,\hept{\begin{cases}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{cases}}\)