giải và biện luận pt tham số a :
\(x-a^2x-\frac{b^2}{b^2-x^2}+a^2=\frac{x^2}{x^2-b^2}\)
Giải và biện luận các pt sau:(x là ẩn,m là tham số)
a)7(m-11)x-2x+14=5m
b)2xm+4(2m+1)=\(m^2+4\left(x-1\right)\)
c)\(\frac{mx+3}{6}+\frac{m^2-1}{2}=\frac{x+5}{10}+\frac{2}{5}\left(x+m^2+1\right)\)
d)\(\frac{x-a}{x-b}+\frac{x-b}{x-a}=2\)
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
Giải và biện luận các pt : ( x là ẩn ; m,a,b là tham số )
\(\frac{mx+3}{6}+\frac{m^2-1}{2}=\frac{x+5}{10}+\frac{2}{5}\left(x+m^2+1\right)\)
\(\frac{x-a}{x-b}+\frac{x-b}{x-a}=2\)
\(\frac{x-a}{b-2}+\frac{x-b}{a-2}+\frac{x+2}{a+b}=3\)
\(\frac{x-a}{a+3}+\frac{x-3}{a-3}=\frac{6a}{9-a^2}\)
cho pt:\(\frac{\left(x+m\right)}{x-5}+\frac{\left(x+5\right)}{x-m}=2\)(ẩn x)
a, giải pt vs m=2
b,tìm m để pt có x=10
c,giải và biện luận vs tham số m
a) \(\frac{\left(x+m\right)}{x-5}+\frac{\left(x+5\right)}{x-m}=2\)
<=> \(\frac{\left(x+m\right)\left(x-m\right)}{\left(x-5\right)\left(x-m\right)}+\frac{\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)
<=>\(\frac{\left(x+m\right)\left(x-m\right)+\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)
<=>\(\frac{x^2-m^2+x^2-5^2}{\left(x-m\right)\left(x-5\right)}=2\)
<=>2(x-m)(x-5)=2x2-m2-25
Thay m=2, ta có:
2(x-2)(x-5)=2x2-22-25
2x2-14x+20=2x2-29
20+29=2x2-2x2+14x
49=14x
=>x=3,5
Các câu sau cũng tương tự, dài quá không hi
Giải và biện luận phương trình:
x-a^2x-b^2/b^2-x^2+a=x^2/x^2-b^2 với a,b là tham số; x là ẩn số
(Đề 1)
mày éo viết được cái đề hẳn họi à ????
Giải và biện luận pt:
x2-a^2x-[b^2/(b^2-x^2)]+a=x^2/(x^2-b^2)
Giải và biện luận phương trình (m là tham số)
a,\(\frac{x-m}{x+5}+\frac{x+5}{x+m}=2\)
b,\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\)
a) ĐKXĐ : \(x\ne5;x\ne-m\)
Khử mẫu ta được :
\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)
\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)
\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)
Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)
Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)
Để nghiệm trên là nghiệm của PT ban đầu thì ta có :
\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)
Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu
b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)
PT đã cho đưa về dạng x(m+2) = 2m(4-m)
Nếu m = -2 thì 0x = -24 ( vô nghiệm )
Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)( \(x\ne2;x\ne m;x\ne2m\) )
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)
Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)
Giải và biện luận theo tham số nghiệm các phương trình sau:
a) \(\frac{6b+7a}{6b}-\frac{3ax}{2b^2}=1-\frac{ax}{b^2-ab}\)(a,b là tham số)
b) \(7\left(m-1\right)x-2x+14=5m\)(m là tham số)
giải và biện luận phương trình:
\(a,\frac{a}{1+bx}=\frac{b}{1+ax}\) (Với a,b là tham số, \(a\ne0,b\ne0\))
b,\(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-a+b}\)(Với a,b là tham số)
c,\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\)(Với m là tham số)
HLEPPPPPPPPPPP
Giải và biện luận phương trình chứa tham số:
a) \(\frac{x-a}{a+1}+\frac{x-1}{a-1}=\frac{2a}{1-a^2}\)
b) \(\frac{x-a}{3}=\frac{x+3}{a}-2\)