cho tam giác abc cân tại a, có bc=3cm, gọi i là giao điể của hai đường phân giác bd và ce
a) chứng minh ai vuông góc với ed
b) tính các góc của tứ giác edcb, biết chu vi của nó bằng 9cm
Cho tam giác ABC cân tại A có BC= 3 cm .Gọi I là giao điểm của hai đường phân giác BD và CE .CM:
a, AI vuông góc với ED
b, Tính các góc của tứ giác EDCB biết chu vi của nó là 9cm
cho tam giác ABC cân tại A cá BC=3 cm. Gọi I là giao điểm cảu 2 đường phân giác BD và CE.
a) Cm AI vuông góc ED
b) tính các góc tứ giác EDCB.Biết chu vi của nó =9cm
Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi H, J, K lần lượt là chân đường vuông góc kẻ từ I đến AB, AC, BC. Biết KI = lcm, BK = 2cm, KC = 3cm.
a) Chứng minh ∆ B H I = ∆ B K I
b) Chứng minh tam giác AHI là tam giác vuông cân.
c) Tính chu vi tam giác ABC.
Cho tam giác abc cân tại a (góc a<90 độ) vẽ BD vuông góc với AC,CE vuông góc AB(D thuộc AC,E thuộc AB) gọi I là giao điểm của BD và CE
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Chứng minh tam giác IBC cân
c)chứng minh AI^2+BE^2=AD^2+BI^2
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔACE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.
2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang
3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.
4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=5 cm. tính CD
5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=3cm. tính độ dài các cạnh BC,CD.
6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.
a) chứng minh ằng HD=KC.
7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.
a) tú giác BEDC là hình gì?Vì sao?
b)Chứng minh BE=ED=DC.
c) biết góc A=500. Tính các góc của tứ giác BEDC.
8. cho tam giác đều ABC, hai đường cao BN,CM
a) chứng minh tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC là hình thang cân
làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà
cho hình thang ABCD(ABsong song CD)Có AC vuông gócBD,AB=5cm, CD=12cm.Tính chiều caoBH
Cho tam giác ABC vuông tại A , AB<AC và I là giao điểm các đường phân giác của tam giác . Gọi D, E, F là chân các đường vuông góc kẻ từ I đến AB , AC , BC
a, CHứng minh AD = AE , BD =BF , CF= CE
b , Tính độ dài BC ,AD và AE biết rằng AB = 9cm , AC = 12cm
c , Chứng minh tổng IA + IB + IC lớn hơn nửa chu vi tam giác ABC
d , Các đường phân giác góc ngoài tại đỉnh B và C cắt nhau tại K . Chứng minh A , I , K thẳng hàng
sorry , I don't no
Em lớp 6 , chịu thôi
KB ko chị
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC) và
CE vuông góc với AB (E thuộc AB).
a) Chứng minh: BD = CE.
b) Chứng minh: Tam giác AED cân.
c) Gọi I là giao điểm của BD và CE. Chứng minh: AI là phân giác của góc A và
AI vuông góc BC
Các bạn giúp mình với
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
Cho tam giác ABC cân tại A có góc A nhọn. Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E. Gọi K là giao điểm của BD và CE. Chứng minh:
a) Tam giác BCE= Tam giác CBD
b) Tam giác BEK = Tam giác CDK
c) AK là phân giác của góc BAC
d) Ba điểm A, K, I thẳng hàng (với I là trung điểm của BC)
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔBEK vuông tại E và ΔCDK vuông tại D có
EB=DC
\(\widehat{EBK}=\widehat{DCK}\)
Do đó: ΔBEK=ΔCDK
c: Xét ΔBAK và ΔCAK có
BA=CA
AK chung
BK=CK
Do đó: ΔBAK=ΔCAK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
Cho tam giác ABC cân tại A có góc A bằng 90 độ . Vẽ BD vuông góc tại D CE vuông góc AB tại E .Gọi I là giao điểm của BD và CE.
a)Chứng minh AD=AE
b)chứng minh AI là tia phân giác của góc BAC
c)Chứng minh DE song song với BC
d)Gọi M là trung điểm cạnh BC . Chứng minh ba điểm A,I,M thẳng hàng
ai giúp mình câu d với ạ. chỉ câu d thôi nha