Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dang huynh
Xem chi tiết
Mr Lazy
7 tháng 8 2015 lúc 19:50

-Gọi hình thang là ABCD, đáy nhỏ AB, đáy lớn CD, có AC⊥AD.

-Từ đỉnh A kẻ đường cao AH của hình thang. Khi đó, DH = \(\frac{50-14}{2}=18\) (cm) và CH = 50 - 18 = 32 (cm)

-Xét tam giác ACD vuông tại A, đường cao AH có:

\(AH^2=HD.HC=18.32=576\Rightarrow AH=24\)(cm)

-Xét tam giác AHD vuông tại H: \(AD=\sqrt{AH^2+DH^2}=\sqrt{24^2+18^2}=30\) (cm)

-Đã có hết các cạnh và đường cao của hình thang, áp dụng công thức tính ra chu vi và diện tích.

nguyen van huy
Xem chi tiết
Dương Anh Đức
Xem chi tiết
le loan
29 tháng 10 2021 lúc 14:08

căn 2

 

Dương Việt Anh
Xem chi tiết
Đỗ Minh Châu
24 tháng 6 2021 lúc 15:13

ertgrrrr545454545454545454lo;ơ'n0u

Khách vãng lai đã xóa
Quỳnh Anh Nguyễn Thị
Xem chi tiết
Hải Đường
Xem chi tiết
Bàng Anh
Xem chi tiết
Mai Ng
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 9:12

Sửa đề: Đáy nhỏ bằng nửa đáy lớn và bằng độ dài hai cạnh bên

AB=CD/2=5cm

BD vuông góc BC

=>góc BDC+góc BCD=90 độ

AD=BC=AB=5cm

AB=AD

=>góc ABD=góc ADB

=>góc ADB=góc BDC

=>DB là phân giác của góc ADC

góc BDC+góc BCD=90 độ

=>1/2*góc BCD+góc BCD=90 độ

=>góc BCD=60 độ

=>góc BDC=30 độ

Xét ΔBDC vuông tại B có BD^2+BC^2=CD^2

=>BD=5*căn 3(cm)

Kẻ BH vuông góc CD

=>BH=BD*BC/CD=5/2*căn 3(cm)

Tran Trong Tan
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 7 2021 lúc 18:31

Kẻ đường cao góc AE \(\Rightarrow AE=AB\)

Lại có ABCD là hình thang cân \(\Rightarrow CD=AB+2DE=AE+2DE\Rightarrow DE=\dfrac{CD-AE}{2}=\dfrac{10-AE}{2}\) 

\(EC=AB+DE=AE+DE=AE+\dfrac{10-AE}{2}=\dfrac{AE+10}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông ACD có:

\(AE^2=DE.EC\Leftrightarrow AE^2=\left(\dfrac{10-AE}{2}\right)\left(\dfrac{10+AE}{2}\right)\)

\(\Leftrightarrow4AE^2=100-AE^2\Rightarrow AE=2\sqrt{5}\) \(\Rightarrow AB=2\sqrt{5}\)

\(S_{ABCD}=\dfrac{1}{2}AE.\left(AB+CD\right)=\dfrac{1}{2}.2\sqrt{5}.\left(2\sqrt{5}+10\right)=...\)

Nguyễn Việt Lâm
14 tháng 7 2021 lúc 18:31

undefined