Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn quốc tú
Xem chi tiết
Con Gái Họ Trần
Xem chi tiết
thanh tam tran
29 tháng 8 2016 lúc 20:09

bacd=dacb vay ...

Sống cho đời lạc quan
10 tháng 12 2016 lúc 20:18

tự làm đi cái này không khó 

Trần Quốc Tuấn hi
Xem chi tiết
Vũ Minh Tuấn
4 tháng 12 2019 lúc 17:56

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)

+ Nếu \(a+b+c+d\ne0\)

\(\Rightarrow c+d=d+a\)

\(\Rightarrow c=a\left(đpcm1\right).\)

+ Nếu \(a+b+c+d=0\)

\(\Rightarrow\) hợp với đề.

\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Nguyễn Hữu Huy
Xem chi tiết
nguyên quang huy
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
24 tháng 6 2021 lúc 8:46

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)

<=> ad + a2 + bd + ab = bc + bd + c2 + cd

<=> ad + a2 + bd + ab - bc - bd - c2 - cd = 0

<=> ad + a2 + ab - bc - c2 - cd = 0

<=> ( ad - cd ) + ( a2 - c2 ) + ( ab - bc ) = 0

<=> d( a - c ) + ( a - c )( a + c ) + b( a - c ) = 0

<=> ( a - c )( a + b + c + d ) = 0

<=> \(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(đpcm\right)}\)

Khách vãng lai đã xóa
Nguyễn Đức Chung
24 tháng 6 2021 lúc 9:24

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)

TH1: \(a+b+c+d=0\Rightarrowđpcm\)

TH2: \(a+b+c+d\ne0\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}=1\)

\(\Rightarrow a+b=b+c\)

\(\Rightarrow a=c\left(đpcm\right)\)

Khách vãng lai đã xóa
Huỳnh Huyền Trang
25 tháng 6 2021 lúc 12:36

=10000 biết8

Khách vãng lai đã xóa
Nguyễn Khánh Ly
Xem chi tiết
Đỗ Văn Hoài Tuân
30 tháng 7 2015 lúc 20:45

Ta có : a+b/b+c = c+d/d+a 
=> (a+b)/(c+d)= (b+c)/(d+a) 
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1 
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a) 
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a 
- Nếu a+b+c+d = 0 (điều phải chứng minh)

 ❤♚ℳℴℴทℛℴƴຮ♚❤
7 tháng 3 2020 lúc 18:29

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

Khách vãng lai đã xóa
Vô Danh
Xem chi tiết
Angel of the eternal lig...
3 tháng 8 2017 lúc 15:28

ta có : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\Rightarrow\frac{\left(a+b\right)}{\left(d+c\right)}=\frac{\left(c+b\right)}{\left(d+a\right)}\)

\(\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}+1=\frac{\left(b+c\right)}{\left(d+a\right)}+1\)

Hay : \(\frac{\left(a+b+c+d\right)}{\left(c+d\right)}=\frac{\left(b+c+d+a\right)}{\left(d+a\right)}\)

- nếu a + b + c + d = 0 thì : c + d = d + a

\(\Rightarrow\)c = a

- Nếu a + b + c + d = 0 ( điều phải chứng minh ) 

Phạm Gia Khánh
Xem chi tiết
Làm gì mà căng
Xem chi tiết
HằngAries
4 tháng 12 2019 lúc 18:00

a+b/b+c=c+d/d+a

=>(a+b)(d+a)=(b+c)(c+d)

=>ad+a^2+bd+ab=bc+bd+c^2+cd

=>ad+a^2+ab=c^2+bc+cd

=>bạn làm tiếp nhé

Khách vãng lai đã xóa