Tìm số tự nhiên có hai chữ số biết tổng hai chữ số của số đó là 16 và hiệu là 2
Bài 1. Tìm hai số, biết tổng của hai số bằng 65 và hiệu của chúng là 11
Bài 2. Tìm hai số, biết tổng của hai số bằng 75 và số này gấp đôi số kia.
Bài 3. Một số tự nhiên lẻ có hai chữ số và chia hết cho 5. Hiệu của số đó và chữ số hàng chục của nó bằng 68. Tìm số đó
1) gọi hai số là x và y
ta có x + y = 65; x - y = 11
=> x = (65 + 11): 2 = 38
=> y = 38 - 11 = 27
2) gọi hai số là x và y
ta có x + y = 75 và x = 2y
=> 2y + y = 3y = 75
=> y = 25; x = 50
bài 3 mk chỉ bt số đó là số 75 còn cách làm chi tiết thì mk ko bt
1) gọi hai số là x và y
ta có x + y = 65; x - y = 11
=> x = (65 + 11): 2 = 38
=> y = 38 - 11 = 27
2) gọi hai số là x và y
ta có x + y = 75 và x = 2y
=> 2y + y = 3y = 75
=> y = 25; x = 50
tìm chữ số tận cùng của một lũy thừa, biết rằng cơ số của lũy thừa đó là một số tự nhiên lớn nhất có hai chữ số và hiệu hai chữ số đó bằng 7, số mũ lũy thừa đó là một số tự nhiên nhỏ nhất có 16 ước là số dương.
Nếu một số phân tích ra thành tích các thừa số nguyên tố:a=pt11.pt22...ptkk
thì số các số là ước của số a sẽ là (p1+1)(p2+1)...(pk+1)
Dựa vào nhận xét này, ta suy ra để số a là nhỏ nhất ta suy ra các thừa số nguyên tố có trong phân tích của số a phải là các thừa số từ nhỏ nhất đến lớn nhất có thể
Nhận xét thứ hai là với số có 16 ước ta có các trường hợp sau:
16=1.16=2.8=4.4=2.2.4=2.2.2.2
Với trường hợp 16 = 1.16 thì khi đó số a có dạng là a=\(2^{15}\)=32768
Với trường hợp 16 = 2.8 thì số a khi đó số a có dạng là a=\(2^7.3^1\)=384
Với trường hợp 16 = 4.4 thì khi đó số a có dạng là a=\(2^3.3^3\)=216
Với trường hợp 16 = 2.2.4 thì khi đó số a có dạng là a=\(2^3.3^2.5^1\)=120
Với trường hợp 16 = 2.2.2.2 thì khi đó số a có dạng là a=\(2^1.3^1.5^1.7^1\)=210
Bằng lập luận toán học ta vẫn có thể suy ra số a là 120
Bài toán trở thành tìm chữ số tận cùng của \(92^{120}\)
Ta dễ dàng có được: \(92^{120}=92^{4.30}=\left(92^4\right)^{30}=\left(....6\right)^{30}=...6\)
Chúc bạn học tốt
Tìm hai số có hiệu bằng 76, biết rằng nếu viết thêm một chữ số 4 vào bên phải số bị trừ và giữ nguyên số trừ rồi thực hiện lại phép trừ thì được hiệu mới bằng 782.
tìm số tự nhiên có hai chữ số, biết rằng tổng hai chữ số bằng 10 và hiệu của hai chữ số là 2.
số lớn
(10+2):2=6
số bé:
(10-2):2=4
ĐS:6
4
Số lớn là :
( 10 + 2 ) : 2 = 6
Số bé là :
10 - 6 = 4
Đáp số : ...
Bài tập: Tìm chữ số tận cùng của một lũy thừa, biết rằng cơ số của lũy thừa đó là số tự nhiên lớn nhất có hai chữ số và hiệu hai chữ số đó bằng 7, số mũ của lũy thừa đó là số tự nhiên nhỏ nhất có 16 ước số dương
Bài 1 : Tìm hai số tự nhiên biết rằng tổng của chúng là 100 và số thứ nhất gấp 4 lần số thứ hai
Bài 2 : Tìm hai số tự nhiên biết rằng hiệu của chúng là 10 và 2 lần số thứ nhất bằng 3 lần số thứ hai
Bài 3 : Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục bé hơn chữ số hàng đơn vị là 3. Nếu đổi chỗ hai chữ số của nó thì được số mới biết rằng tổng của số mới và ban đầu là 77
Bài 1:
Gọi hai số tự nhiên cần tìm là a,b
Số thứ nhất gấp 4 lần số thứ hai nên a=4b(1)
Tổng của hai số là 100 nên a+b=100(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a=4b\\a+b=100\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4b+b=100\\a=4b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=100\\a=4b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=\dfrac{100}{5}=20\\a=4\cdot20=80\end{matrix}\right.\)
Bài 2:
Gọi hai số cần tìm là a,b
Hiệu của hai số là 10 nên a-b=10(4)
Hai lần số thứ nhất bằng ba lần số thứ hai nên 2a=3b(3)
Từ (3) và (4) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=10\\2a=3b\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}a-b=10\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b=20\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b-2a+3b=20\\2a=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\2a=3\cdot20=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)
Bài 3:
Gọi số tự nhiên cần tìm có dạng là \(\overline{ab}\left(a\ne0\right)\)
Chữ số hàng chục bé hơn chữ số hàng đơn vị là 3 nên b-a=3(5)
Nếu đổi chỗ hai chữ số cho nhau thì tổng của số mới lập ra và số ban đầu là 77 nên ta có:
\(\overline{ab}+\overline{ba}=77\)
=>\(10a+b+10b+a=77\)
=>11a+11b=77
=>a+b=7(6)
Từ (5) và (6) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=5\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a+b+a+b=5+7\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2b=12\\a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6\\a=7-6=1\end{matrix}\right.\)
Vậy: Số tự nhiên cần tìm là 16
1.Tìm abc biết:
\(\overline{abc}\):(a+b+c)=11(dư 11)
2.Tìm 1 số tự nhiên có 2 chữ số biết rằng tổng các chữ số đó bằng 13 đồng thời hiệu của số đó và số viết theo thứ tự ngược lại lại là số có chữ số tận cùng là 7
3.Tổng của 3 số tự nhiên là 2241.Nếu xóa chữ số hàng trăm của số tự nhiên ta được số thứ haI,nếu xóa chữ số hàng chục của số thứ hai ta được số thứ ba.Tìm 3 số đó.
1=506 2=217,2 3=68 4=58;128 5=50 6=48 7=55;65 8=3;20 9=23780 10=6 11=46 12=49;391 13=80 14=10;2005 15=1/64
Tìm một số tự nhiên ở giữa số 70 và 80 biết rằng số đó vừa có thể viết được dưới dạng tổng của hai số tự nhiên liên tiếp, vừa viết được dưới dạng tổng của 3 số tự nhiên liên tiếp.
Cho hai hình vuông có hiệu hai chu vi là 80cm, hiệu hai diện tích là 2240. Độ dài cạnh của hình vuông lớn là cm.
Tìm một số có hai chữ số biết nếu viết thêm hai chữ số vào bên phải số đó thì được một số mới hơn số đó 1997 đơn vị.
câu 1 : 75
câu 2 : 66
câu 3 : 20
chắc chắn 100% luôn trong violympic lớp 5 vòng 15
nhớ tk m nhé
Bài thứ nhất ra 75
Bài thứ hai ra 66 cm
Bài thứ ba ra 19