cho \(a\ge0\). CMR:
\(\frac{a^2-\sqrt{a}}{a^2+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a^2-\sqrt{a}-1}+a+1=\left(\sqrt{a}-1\right)^2\)
cho \(a\ge0\). CMR:
\(\frac{a^2-\sqrt{a}}{a^2+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a^2-\sqrt{a}+1}+a+1=\left(\sqrt{a}-1\right)^2\)
Đề của bạn bị sai, mình sửa lại đề ở dưới nhé!
\(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}+a+1\)
\(=\frac{\left(a^2-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{\left(a+\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}+a+1\)
\(=\frac{\left(a^2-\sqrt{a}\right)\left(a-\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)+\left(a+1\right)\left(a+\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(a+1\right)^2-\left(\sqrt{a}\right)^2}\)
\(=\frac{\left(a^2-\sqrt{a}\right)\left(a-\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)\left(a+1\right)\left[\left(a+1\right)^2-a\right]}{\left(a-1\right)^2-a}\)
\(=\frac{a^3-a^2\sqrt{x}+a^2-a\sqrt{a}+a-\sqrt{a}-a^3-a^2\sqrt{a}-a^2-a\sqrt{a}-a-\sqrt{a}+\left(a+1\right)\left[\left(a+1\right)^2-a\right]}{a^2+2a+1-a}\)
\(=\frac{-2a^2\sqrt{a}-2a\sqrt{a}-2\sqrt{a}+\left(a+1\right)\left(a^2+2a+1-a\right)}{a^2+a+1}\)
\(=\frac{-2\sqrt{a}\left(a^2+a+1\right)+\left(a+1\right)\left(a^2+a+1\right)}{a^2+a+1}\)
\(=\frac{\left(a^2+a+1\right)\left[-2\sqrt{x}+\left(x+1\right)\right]}{a^2+a+1}\)
\(=x-1-2\sqrt{x}\)
\(=\left(\sqrt{x}-1\right)^2\)
(Chúc you học giỏi nhoa!)
Ui ui mình ghi lộn, xin lỗi nhoa, vì x dễ làm hơn nên mình ghi lộn a thành x, mong bạn thông cảm hihi!
cho \(a\ge0\). CMR:
\(\frac{a^2-\sqrt{a}}{a^2+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a^2-\sqrt{a}-1}+a+1=\left(\sqrt{a}-1\right)^2\)
\(VT=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+a+1\)
\(=a-\sqrt{a}-a-\sqrt{a}+a+1\)
\(=a-2\sqrt{a}+1=\left(\sqrt{a}-1\right)^2=VP\)
a) CMR \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\) với \(a\ge0\)và \(a\ne1\).
b) CMR \(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}=1\)
a) Ta có: \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)\)
\(=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\cdot\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\frac{1}{1+\sqrt{a}}\)
\(=\left(1+\sqrt{a}\right)^2\cdot\frac{1}{1+\sqrt{a}}\)
\(=1+\sqrt{a}\) Bằng 1 kiểu gì đây._.?
a) Xin lỗi sửa lại phần a:
Ta có: \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(1+\sqrt{a}\right)^2\cdot\frac{1}{\left(1+\sqrt{a}\right)^2}\)
\(=1\)
b) Ta có: \(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\sqrt{6}+2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)=3-2=1\)
Cho \(a,b,c\ge0\) thỏa mãn \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
CMR: \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Rút gọn:
a) \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\left(x\ge0,x\ne1\right)\)
b) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
c) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)
\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)
cmr:
a) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)=1\) (với \(a,b\ge0;a\ne b\))
b \(\frac{2+\sqrt{2}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)
Chứng minh các đẳng thức sau
a) \(\left(\frac{2\sqrt{6}-\sqrt{3}}{2\sqrt{2}-1}+\frac{5+2\sqrt{5}}{2+\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
b) \(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}=-a\)(Với b<a<0
c)\(\left(\sqrt{a}+\frac{1-a\sqrt{a}}{1-\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)với a\(\ge0\),a khác 1
d) \(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right)40\sqrt{15}=600\)
e) \(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)với x\(\ge0;x\ne1\)
A=\(\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right):\frac{\sqrt{a}-2}{a+1}\left(a\ge0;a\ne1\right)\)
Rút gọn
A= (\(\frac{1}{\sqrt{a}-1}\) - \(\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\)) : \(\frac{\sqrt{a}-2}{a+1}\)
<=> (\(\frac{1}{\sqrt{a-1}}\) - \(\frac{2\sqrt{a}}{\left(a\sqrt{a-1}\right)-\sqrt{a}\left(\sqrt{a}-1\right)}\)). \(\frac{a+1}{\sqrt{a}-2}\)
<=> (\(\frac{1}{\sqrt{a}-1}\) - \(\frac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1-\sqrt{a}\right)}\)). \(\frac{a+1}{\sqrt{a}-2}\)
<=> (\(\frac{a+1}{\left(\sqrt{a}-1\right)\left(a+1\right)}\).\(\frac{a+1}{\sqrt{a}+2}\)
<=> \(\frac{a+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
Bài 1:Rút gọn
\(a,\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(b,\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(c,\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)\times\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\left(a\ne1;a\ge0\right)\)
Bài 2: Rút gọn biểu thức
\(P=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)