cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 ; n chia hết cho 5
cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 ; n chia hết cho 5
n chia hết cho 2 và 5 => 4a ; 5b chia hết cho 2 và 5
muốn chia hết cho 2 và 5 thì 4a và 5b phải có số tận cùng là 0
4a có thể là :20;40;60;80;......
a có thể là :5;10;15;20;......
5b có thể là :10;20;30;40;50;......
b có thể là :2;4;6;8;10;........
n = 4a + 5b chia hết cho 2
Để biểu thức 4a + 5b chia hết cho 2 thì 4a phải chia hết cho 2 và 5b phải chia hết cho 2.
4a chia hết cho 2 => a có thể là: 1; 2; 3; 4; 5; 6; ... (Vì trong phép tính 4a có 4 là số chẵn nên 4 nhân với bất kì số nào thì kết quả vẫn là số chẵn. Mà số chẵn thì sẽ chia hết cho 2.)
5b chia hết cho 2 => b có thể là: 2; 4; 6; 8; ... (Vì trong phép tính 5b có 5 là số lẻ nên khi nhân 5 với số chẫn ta mới được kết quả là số chẵn vì số chẵn chia hết cho 2.)
n = 4a + 5b chia hết cho 5
Để biểu thức 4a + 5b chia hết cho 5 thì 4a phải chia hết cho 5 và 5b phải chia hết cho 5.
4a chia hết cho 5 => a có thể là: 5; 10; 15; 20; 25; ... (Để phép tính 4a chia hết cho 5 thì ta phải nhân 4 với những số chia hết cho 5 (hay còn gọi la bội của 5.)
5b chia hết cho 5 => b có thể là: 1; 2; 3; 4; 5; ... (Vì trong phép tính 5b đã có 5 là số chia hết cho 5 (hay còn gọi là bội của 5) thì khi ta nhân 5 với bất kì số nào ta vẫn được kết quả chia hết cho 5.)
cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 và cho 5
Cho a , b biết ( a , b € N ) biết 4a +5b chia hết 23 hãy chứng minh 7a + 3b chia hết cho 23
Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23
16a+20b+7a+3b = 23a+23b chia hết cho 23
mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)
Bài 1: Ch a,b thuộc Z t/m:(17a+5b).(5a+17b) chia hết cho 11.CMR:: (17a+5b)(5a+17b) chia hết cho 121
Bài 2: Cho a,b thuộc N . CMR: ab(a^2-b^2)(4a^2-b^2) chia hết cho 5
Bài 3: Cho a,b thuộc Z.CMR: ab(a^2+b^2)(a^2-b^2) chia hết cho 30
Bài 4: Cho n thuộc Z.CMR: n^6-n^2 chia hết cho 60
CÁC BẠN GIÚP MÌNH NHÉ
1) Cho A= (3n - 13)/(n - 1) (n thuộc Z )
a) Tìm n nguyên để A nguyên.
b) Tìm n nguyên để A là phân số tối giản.
2. Cho a,b thuộc N. Chứng minh rằng: 4a + b chia hết cho 5 và a + 4b chia hết cho 5
Cho a,b,c thuoc N, biết (4a+5b+7c) chia het cho 11,cmr (5a+9b+6c) chia hết ch0 11. Các thán giúp em vs
Tìm số tự nhiên để:
a, 4a - 7 chia hết cho n-1
b. 10n-2 chia hết cho n-2
Cho a,b,c thuộc N. Biết (4a+5b+7c) chia hết cho 11. CMR (5a+9b+6b) cjia hết cho 11
Cho a;b thuộc N thỏa mãn 7a+3b chia hết cho 23
CMR 4a+5b chia hết cho 23
nếu 4a + 5b chia hết cho 23 (1)
(1) \(\Rightarrow\) (7a + 3b) + (4a + 5b) = (11a + 8b) chia hết cho 23 (2)
(1) \(\Rightarrow\) (7a + 3b) - (4a + 5b) = (3a - 2b) chia hết cho 23
\(\Rightarrow\) (3a - 2b).4 chia hết cho 23 \(\Leftrightarrow\) (12a - 8b) chia hết cho 23
(3) lấy (2) + (3) = 23a chia hết cho 23 (đúng \(\forall a\))
Vậy 4a + 5b chia hết cho 23
Giải:
Ta có: \(7a+3b⋮23\Rightarrow6\left(7a+3b\right)⋮23\)
\(\Rightarrow6\left(7a+3b\right)+\left(4a+5b\right)⋮23\)
\(\Rightarrow46a+23b⋮23\Rightarrow23\left(2a+b\right)⋮23\) (Đúng)
Vậy \(4a+5b⋮23\) (Đpcm)