Tính giá trị biểu thức:
101+100+........+3+2+1/101-100+99-98+............+3-2+1
Tính giá trị biểu thức:
101+100+.......+3+2+1 / 101-100+99-98+......+3-2+1
a)101+100+...+3+2+1
số số hạng:(101-1):1+1=101
tổng: (101+1)*101:2=5151
Câu trả lời : A= (101-100) + (99-98) + ... + (5-4) + (3-2) +1
A= 1 + 1 + ... + 1 + 1 + 1
A= 1 x 51
A= 51
A=101+100+...........+3+2+1
=>Số số hạng:(101-1):1+1=101
=>Số cặp:101:2=101/2
=>Tổng là:(101+1)x101/2=102x101/2=101x51=...........(tự tính nha)
Tính giá trị biểu thức:
101 + 100 + 99 + 98 +......+ 3 + 2 + 1
101 - 100 + 99 - 98 +.......+ 3 - 2 + 1
Giúp mình nha, mình đang cần gấp
Cảm one các bạn nhiều!
tính giá trị biểu thức 1-2+3-4+5-6+...+97-98+99-100+101
\(1-2+3-4+5-6+.......+97-98+99-100+101\)
\(=\left(1-2\right)+\left(3-4\right)+\left(4-5\right)+.....+\left(97-98\right)+\left(99-100\right)+101\)
\(=50.\left(-1\right)+101=51\)
tính giá trị biểu thức 1-2+3-4+5-6+...+97-98+99-100+101
1 - 2 + 3 - 4 + 5 - 6 + ...+..+97 - 98 + 99 - 100 + 101
= 1 + 0 + 0 + 0 + .. + ( - 101 )
= 1 + ( - 101 )
= 100
k mk nha
= \(1+0+0+0+...+\left(-101\right)\)
\(=1+\left(-101\right)\)
\(=-100\)
lan hương sai rồi kìa
Tính Giá Trị của biểu thức sau biết ;
S = 1 /1 . 2 . 3 . 4 + 1 / 2 . 3 . 4 . 5 +......................+ 1 / 98 . 99 . 100 . 101
Tính giá trị biểu thức của
2+3+4+5+......+96+97+98+99+100+101
Tổng trên có giá trị là :
Số số hạng là :
\(\left(101-2\right):1+1=100\)
Tổng trên có giá trị là :
\(\dfrac{\left(101+2\right).100}{2}=5150\)
A= 2 + 3+4+...+96+97+98+99+100+101
Khoảng cách của dãy số trên là: 3-2 =1
Số số hạng của dãy số trên là: (101 - 2): 1 + 1 = 100 (số hạng)
Tổng A là: A = (101+2)\(\times\) 100 : 2 =5150
Đáp số: 5150
Tính giá trị biểu thức sau
\(\left(100+\frac{99}{2}+\frac{98}{3}+.....+\frac{1}{100}\right)\div\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{101}\right)-2\)
\(\left(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)
\(=\frac{\left[\left(\frac{99}{2}+1\right)+\left(\frac{98}{3}+1\right)+...+\left(\frac{1}{100}+1\right)+\frac{101}{101}\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=\frac{\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}+\frac{101}{101}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=\frac{101.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=101-2\)( vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\ne0\))
\(=99\)
Tham khảo nhé~
A 99/101 B 99/100 C 99/202 D 100/101 tính giá trị biểu thức : 1/3 + 1/6 + 1/10+ 1/15 +...... + 1/5050
Tính giá trị biểu thức:
A = 1-3+5-7+9-11+13-15+...+97-99+101
B=1-2-3-4+5-6-7-8+9-10-11-12+...+97-98-99-100