Rút gọn :
\(\left(x-3\right)\left(x+3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
Rút gọn \(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)
1/ (x+1)(x+2) +1/ (x+2)(x+3) +1/ (x+3)(x+4) +1/ (x+4)(x+5)
=1/x+1 -1/x+2 +1/x+2 -1/x+3 +1/x+3 -1/x+4 +1/x+4 -1/x+5
=1/x+1 -1/x+5
=4/(x+1)(x+5)
\(=\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x+1}-\frac{1}{x+5}=\frac{x+5-x-1}{\left(x+1\right)\left(x+5\right)}=\frac{4}{\left(x+1\right)\left(x+5\right)}\)
Bài 4:Rút gọn biểu thức
a) \(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right).\left(x-3\right)\)
b) \(\left(x+1\right)^2+3\left(x-5\right).\left(x+5\right)-\left(2x-1\right)^2\)
c) \(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
d) \(\left(x+3\right)\left(x-3\right)-\left(x+5\right).\left(x-1\right)-\left(x-4\right)^2\)
a. \(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=-6x+5\)
b. \(\left(x+1\right)^2+3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)
\(=x^2+2x+1+3x^2-75-4x^2+4x-1\)
\(=6x-75\)
c. \(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-x^2-x+6-x^2+16\)
\(=-15x+22\)
d. \(\left(x+3\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
\(=x^2-9-x^2-4x+5-x^2+8x-16\)
\(=-x^2+4x-20\)
Bài làm:
a) \(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=-6x+5\)
b) \(\left(x+1\right)^2+3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)
\(=x^2+2x+1+3x^2-75-4x^2+4x-1\)
\(=6x-75\)
c) \(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-x^2-x+6-x^2+16\)
\(=-15x+22\)
d) \(\left(x+3\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
\(=x^2-9-x^2-4x+5-x^2+8x-16\)
\(=-x^2-4x-20\)
đầy đủ từng bước nhé
\(a,2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-\left(x^2-4x+4\right)-\left(x^2-9\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=\left(2x^2-x^2-x^2\right)+\left(4x-10x\right)+\left(9-4\right)\)
\(=0-6x+5=5-6x\)
\(b,\left(x+1\right)^2+3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)
\(=\left(x^2+2x+1\right)+3\left(x^2-25\right)-\left(4x^2-4x+1\right)\)
\(=x^2+2x+1+3x^2-75-4x^2+4x-1\)
\(=\left(x^2+3x^2-4x^2\right)+\left(2x+4x\right)+\left(1-1-75\right)\)\(=6x-75\)
\(c,2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-\left(x+2\right)\left(x-2\right)-x+2-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-x^2+4-x+2-x^2+16\)
\(=\left(2x^2-x^2-x^2\right)+\left(-14x-x\right)+\left(16+2+4\right)\)
\(=0-15x+22=22-15x\)
\(d,\left(x+3\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
\(=\left(x+3\right)\left(x-3\right)-\left(x+1\right)\left(x-1\right)-4\left(x-1\right)-\left(x-4\right)^2\)
\(=x^2-9-x^2+1-4x+4-\left(x^2-8x+16\right)\)
\(=\left(x^2-x^2\right)-4x+\left(4+1-9\right)-x^2+8x-16\)
\(=-4x-4-x^2+8x-16=-x^2+\left(8x-4x\right)-\left(16+4\right)\)
\(=-x^2+4x-20\)
Rút gọn phân thức
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+..+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}=\frac{-5}{x\left(x-5\right)}\)
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}\)
\(=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}\)
\(=\frac{x-5-x}{x\left(x-5\right)}\)
\(=-\frac{5}{x\left(x-5\right)}\)
Rút gọn biểu thức sau:
a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^2+3\left(x-1\right)\left(x+1\right)\)
b, \(\left(x^4-5x^2+25\right)\left(x^2+5\right)-\left(2+x^2\right)^2+3\left(1+x^2\right)^2\)
rút gọn:
\(A=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
Theo ý kiến của mình thì:
\(A=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20\right)\)
\(A=3\left(x-1-x-1\right)\left(x-1+x+1\right)+2\left(x-3\right)^2-\left(2x+3\right)^2+15\)
\(A=3\left(-2\right)\left(2x\right)+2\left(x-3-2x-3\right)\left(x-3+2x+3\right)+15\)
\(A=-12x+2\left(-6-x\right)\left(3x\right)+15\)
\(A=-12x-36x-6x^2+15\)
\(A=-6x\left(2+6+x\right)+15\)
\(A=-6x\left(8+x\right)+15\)
Rút gọn phân thức sau ( phân thức đều có nghĩa )
\(N=\dfrac{\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1}{x^2+7x+11}\)
\(N=\dfrac{\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1}{x^2+7x+11}\)
\(=\dfrac{\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]+1}{x^2+7x+11}\)
\(=\dfrac{\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1}{x^2+7x+11}\)
Đặt \(x^2+7x+11=y\), thay vào \(N\) ta được:
\(N=\dfrac{\left(y-1\right)\left(y+1\right)+1}{y}\)
\(=\dfrac{y^2-1+1}{y}\)
\(=\dfrac{y^2}{y}\)
\(=y\)
\(=x^2+7x+11\)
Vậy \(N=x^2+7x+11\).
\(\text{#}Toru\)
Rút gọn :
a ) \(\left(x+3\right)^2-\left(x-2\right).\left(x+2\right)\)
b ) \(\left(3x-4\right)^2-\left(x-4\right).\left(x+4\right)-8x^2\)
c ) \(\left(x-2\right).\left(x+2\right)+\left(x-3\right).\left(x+3\right)-x\left(2x+1\right)-4\)
a/ \(\left(x+3\right)^2-\left(x-2\right)\left(x+2\right)\)
= \(\left(x+3\right)^2-\left(x^2-4\right)\)
= \(\left(x+3\right)^2-x^2+4\)
= \(\left(x+3-2\right)\left(x+3+2\right)+4\)
= \(4+\left(x+1\right)\left(x+5\right)\)
b/ \(\left(3x-4\right)^2-\left(x-4\right)\left(x+4\right)-8x^2\)
= \(\left(3x-4\right)^2-\left(x^2-16\right)-8x^2\)
= \(\left(3x-4\right)^2-x^2+16-8x^2\)
= \(\left(3x-4\right)^2-9x^2+16\)
= \(\left(3x-4-3x\right)\left(3x-4+3x\right)+16\)
= \(-4\left(6x-4\right)+16\)
= \(4\left(4-6x\right)+16\)
= \(4\left(4-6x+1\right)\)
= \(4\left(5-6x\right)\)
c/ \(\left(x-2\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)-x\left(2x+1\right)-4\)
= \(x^2-4+x^2-9-2x^2-x-4\)
= \(-17-x\)
= \(-\left(17+x\right)\)
Tính ( rút gọn nếu có thể )
\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)
\(-7x^4+5x^3-x^2\left(-x^2+3x-1\right)\)
\(\left(2x-3\right)\left(x+4\right)+\left(-x+1\right)\left(x-2\right)\)
\(4x\left(x^2-x+3\right)-\left(x-6\right)\left(x-5\right)\)
\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)
\(=3x^4-4x^3+2x^4-4x^3+14x^2\)
\(=5x^4-8x^3+14x^2\)
3x4 - 4x3 + 2x(x3 - 2x2 + 7x )
= 3x4 - 4x3 + 2x4 _ 4x3 + 14x2
= 5x4 - 8x3 + 14x2
Rút gọn
a) \(x.\left(x+4\right).\left(x-4\right)-\left(x^2+1\right).\left(x-1\right)\)
b) \(\left(y-3\right).\left(y+3\right).\left(y^2+9\right)-\left(y^2+2\right).\left(y^2-2\right)\)
a) \(x\left(x^2-16\right)-\left(x^2+1\right)\left(x-1\right)\) =\(x^3-16x^2-x^3+x^2-x+1\)
= \(x^2-17x+1\)
b) \(\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\) = \(\left(y^4-81\right)-\left(y^4-16\right)\)
=\(-65\)