Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Caitlyn_Cảnh sát trưởng...
Xem chi tiết
Cao Huy Hiếu
Xem chi tiết
Thao Tran
27 tháng 4 2015 lúc 20:46

ta có : 1+1+1+1+1+1+1+1x0

=> 1x8 = 8

mà kòn x vs 0 nữa :

=> tổng đó =0

=> 0<3/4

=> E<3/4

phạm thuý hằng
Xem chi tiết
ST
30 tháng 4 2017 lúc 9:02

\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{203}{3^{100}}< 3\)

\(\Rightarrow4E< 3\)

\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)

DanAlex
30 tháng 4 2017 lúc 8:41

Bài 1:

Ta có: \(3+3^2+3^3+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^5.120+...+3^{96}.120\)

\(=120.\left(1+3^5+.....+3^{96}\right)\)

\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)

Đặng Thị Ngọc Anh
Xem chi tiết

\(E=\frac{1}{3}+\frac{2}{3}+\frac{3}{3}+...+\frac{100}{3}\)

\(=\frac{1+2+3+...+100}{3}\)

\(=\frac{101\times100\div2}{3}\)

\(=\frac{5050}{3}\)

 vì \(\frac{5050}{3}>1\)mà \(\frac{3}{4}< 1\)\(\Rightarrow\frac{5050}{3}>\frac{3}{4}\)

 Vậy E>\(\frac{3}{4}\)có thể bạn ghi sai đề phải là e>3/4 mới đúng

Đặng Thị Ngọc Anh
31 tháng 3 2019 lúc 16:24

bạn ơi có mũ đấy tử là bao nhieu thì mũ của mẫu là từng đây 

Mi Ru Gi
Xem chi tiết
Nguyễn Lê Khánh Ly
Xem chi tiết
Nguyễn Hoàng Huy
Xem chi tiết
Đặng Thị Ngọc Anh
Xem chi tiết
Kiệt Nguyễn
31 tháng 3 2019 lúc 16:57

\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\)

\(\Leftrightarrow3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)

\(\Leftrightarrow3E-E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{101}{3^{101}}\)

\(\Leftrightarrow2E=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{100}{3^{101}}\)

Đặt \(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Leftrightarrow3S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Leftrightarrow3S-S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{100}}\)

\(\Leftrightarrow2S=1-\frac{1}{3^{100}}\)

\(\Leftrightarrow S=\left(1-\frac{1}{3^{100}}\right)\div2\)

\(\Leftrightarrow2E=1+\left(1-\frac{1}{3^{100}}\right)\div2-\frac{101}{3^{101}}\)

\(\Leftrightarrow2E=1+\frac{1}{2}-\frac{1}{3^{100}.2}-\frac{101}{3^{101}}\)

\(\Leftrightarrow2E=\frac{3}{2}-\frac{1}{3^{100}.2}-\frac{101}{3^{101}}< \frac{3}{2}\)

\(\Leftrightarrow E< \frac{3}{4}\left(đpcm\right)\)

Jesseanna
Xem chi tiết