Tìm 2 số a và b,(a>b) biết rằng a + b=270 va ƯCLN(a,b)=45
tìm hai số tự nhiên a,b (a>b) biết rằng a+b=270 và ƯCLN (a,b) =45
Tìm hai số tự nhiên a và b (a>b), biết rằng :
a) a=96 và ƯCLN(a,b)=12
b) ƯCLN(a,b)=45 và a=270
c) a+b=120 và ƯCLN(a,b)=12
d) a+b=224 và ƯCLN(a,b)=28
e) a.b=1944 và ƯCLN(a,b)=18
a, b: Bạn xem lại đề.
c.
Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=12x+12y=120\Rightarrow x+y=10$
Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:
$(x,y)=(9,1), (7,3)$
$\Rightarrow (a,b)=(108. 12), (84, 36)$
d.
Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=28x+28y=224$
$\Rightarrow x+y=8$
Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$
$\Rightarrow (a,b)=(196, 28), (140, 84)$
e.
Vì $ƯCLN(a,b)=18$ và $a>b$ nên đặt $a=18x, b=18y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=18x+18y1944$
$\Rightarrow x+y=108$
Với điều kiện $x>y, (x,y)=1$ thì $x,y$ có thể nhận khá nhiều giá trị. Bạn có thể xét từng TH để tính toán nhé.
1. ƯCLN của hai số là 45. Số lớn là 270, tìm số bé.
2. Tìm hai số biết tổng của chúng là 162 và ƯCLN của chúng là 18.
3. Tìm hai số tự nhiên a và b, biết rằng BCNN(a,b) = 300; ƯCLN (a,b) = 15.
bài 1:
Gọi 2 số đó là a và 270 với a < 270
Ta có ƯCLN(a ; 270) = 45
=> a = 45m ; 270 = 45 . 6 (m ∈ N)
Mà ƯCLN(a ; 270) = 45 => ƯCLN(m ; 6) = 1
Do a < 270 nên m < 6.
Vậy m ∈ {1 ; 5}
Khi đó a ∈ {45 ; 225}
Vậy số bé là 45 hoặc 225
Bài 2:
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162
x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp
1. m=4; n=5 hoặc ngược lại
=> x=18*4=72 và y=18*5=90 hoặc ngược lại
2. m=1 và n=8 hoặc ngược lại
=> x=18 và y=144 hoặc ngược lại
3. m=2 và n=7 hoặc ngược lại
=> x=36 và y=126 hoặc ngược lại
Bài 3:
Vì BCNN(A,B)=300;ƯCLN(A,B)=15=> AB= 4500
ta có: ƯCLN(A,B)= 15=> A=15k;b=15q với ƯCLN(k;q)=1
=> 15k x 15q = 4500
=> 225kq=4500
=> kq= 20
Mà ƯCLN(k;q)=1 => ta có bảng:
k | 1 | 4 | 5 | 20 |
---|---|---|---|---|
A | 15 | 60 | 75 | 300 |
q | 20 | 5 | 4 | 1 |
B | 300 | 75 | 60 | 15 |
Mà theo đề bài: A+15=B=> A=60; B=75
tìm 2 số a,b a>b biết a.b=300 và ucln[a,b]=5
bài 1:
Gọi 2 số đó là a và 270 với a < 270
Ta có ƯCLN(a ; 270) = 45
=> a = 45m ; 270 = 45 . 6 (m ∈ N)
Mà ƯCLN(a ; 270) = 45 => ƯCLN(m ; 6) = 1
Do a < 270 nên m < 6.
Vậy m ∈ {1 ; 5}
Khi đó a ∈ {45 ; 225}
Vậy số bé là 45 hoặc 225
Bài 2:
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp1. m=4; n=5 hoặc ngược lại=> x=18*4=72 và y=18*5=90 hoặc ngược lại2. m=1 và n=8 hoặc ngược lại=> x=18 và y=144 hoặc ngược lại3. m=2 và n=7 hoặc ngược lại=> x=36 và y=126 hoặc ngược lại
Bài 3:
Vì BCNN(A,B)=300;ƯCLN(A,B)=15=> AB= 4500
ta có: ƯCLN(A,B)= 15=> A=15k;b=15q với ƯCLN(k;q)=1
=> 15k x 15q = 4500
=> 225kq=4500
=> kq= 20
Mà ƯCLN(k;q)=1 => ta có bảng:
k | 1 | 4 | 5 | 20 |
---|---|---|---|---|
A | 15 | 60 | 75 | 300 |
q | 20 | 5 | 4 | 1 |
B | 300 | 75 | 60 | 15 |
Mà theo đề bài: A+15=B=> A=60; B=75
Tìm 2 số a;b thuộc N*. Biết: a>b; a + b= 270 và ƯCLN (a;b) = 45
Ta có : ƯCLN ( a,b ) = 45 \(\Leftrightarrow\hept{\begin{cases}a=45a'\\b=45b'\\\left(a',b'\right)=1\end{cases}}\)
Theo đề bài : a + b = 270
nên 45a' + 45b' = 270
suy ra a' + b' = 270 : 45 = 6
Do a \(\ge\)b nên a' \(\ge\)b' .
Chọn hai số a' , b' có tổng bằng 6, nguyên tố cùng nhau, a' \(\ge\)b' ta được : a' = 5 ; b' = 1
Do đó : a = 45 . 5 = 225
b = 45 . 1 = 45
Tìm hai số a, b thuộc N. Biết a + b = 270 và ƯCLN (a,b) = 45.
a=45m (m thuộc N),b=45n(n thuộc N)
(m;n)=1 suy ra a+b=270;45(m+n)=270
m+n=6 Mà (m;n) =1 suy ra m+n=5+1,vậy a=45,b=225,b=45
Tìm 2 số tự nhiên a và b, biết
a > b; a + b = 270 và ƯCLN (a, b) = 45
Làm nhanh có tick
Do ƯCLN(a,b)=45 nên
đặt a=45m , b=45n ( ƯCLN(m,n)=1 , m ≥ n)
Theo đề ta có
a + b =270
45m+45n=270
m+n=6
Lập bảng giá trị
m 0 1 2 3 4 5 6
n 6 5 4 3 2 1 0
L L L L L N L do ƯCLN(m,n)=1 , m ≥ n
Suy ra a=45.5=225
b=45.1=45
Tìm hai số a và b ; biết rằng ƯCLN=270,BCNN=45.
AI NHANH VÀ ĐÚNG MIK TICK.....
Ta có:
\(a.b=ƯCLN\left(a,b\right).BCNN\left(a,b\right)\)
\(\Rightarrow a.b=45.270\)
\(\Rightarrow a.b=12150\)
Vì \(ƯCLN\left(a,b\right)=45\Rightarrow\hept{\begin{cases}a=45.m\\b=45.n\end{cases};\left(m,n\right)=1;}m,n\in N\)
Thay \(a=45.m\),\(b=45.n\)vào \(a.b=12150\), ta có:
\(45.m.45.n=12150\)
\(\Rightarrow\left(45.45\right).\left(m.n\right)=12150\)
\(\Rightarrow2025.\left(m.n\right)=12150\)
\(\Rightarrow m.n=12150\div2025\)
\(\Rightarrow m.n=6\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\)Ta có bảng giá trị:
m | 1 | 6 | 2 | 3 |
n | 6 | 1 | 3 | 2 |
a | 45 | 270 | 90 | 135 |
b | 270 | 45 | 135 | 90 |
Vậy các cặp (a,b) cần tìm là:
(45; 270); (270; 45); (90; 135); (135; 90).
vì a.b=bcnn.ucln=270.45=12150.vì bcnn(a,b) =45 suy ra a=45.x,b=45.y(ucln(x,y)=1 suy ra 12150=45.x.45y suy ra x.y=12150:45:45=6.suy ra [x=1,y=6],[x=6,y=1],[x=2,y=3],[x=3,y=2]
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) ƯCLN của hai số là 45 . số lớn là 270 . tìm số ngỏ
b) ƯCLN của hai số tự nhiên bằng 4 số nhỏ bằng 8 . tìm số lớn
UKM
^6^7g^7*(KHV C GTGFCCGttedx
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) ƯCLN của hai số là 45 . số lớn là 270 . tìm số ngỏ
b) ƯCLN của hai số tự nhiên bằng 4 số nhỏ bằng 8 . tìm số lớn