Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Bảo Thanh
Xem chi tiết
Nguyễn Ngọc Bích Kim
Xem chi tiết
Nguyễn Linh Chi
6 tháng 2 2020 lúc 10:03

Với số tự nhiên n, ta có:

\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}=\frac{n\left(n+1\right)}{2}+\frac{n\left(n+1\right)+2\left(n+1\right)}{2}\)

\(=\frac{n\left(n+1\right)}{2}+\frac{n\left(n+1\right)}{2}+n+1\)

\(=n\left(n+1\right)+n+1=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)là số chính phương

Khách vãng lai đã xóa
No Chu
Xem chi tiết
kikyou
Xem chi tiết
Lê Bảo Thanh
Xem chi tiết
huu phuong ho
11 tháng 7 2016 lúc 12:07
Gửi éo đc
huu phuong ho
11 tháng 7 2016 lúc 12:11

Gọi 3 STN liên tiếp là a;a+1;a+2 Ta có tổng là : a+a+1+a+2=3a+3=3(a+1) số này chia hết cho 3. Tương Tự Gọi 4 STN liên tiếp là a;a+1;a+2;a+3 Ta có: 4a+4=4(a+1) chia hết cho 4

Hoàng Lê Bảo Ngọc
11 tháng 7 2016 lúc 12:16

\(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1\)\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.

Lê Bảo Thanh
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 7 2016 lúc 12:51

Ta có : \(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=n^2\left(n+1\right)^2+2n\left(n+1\right)+1\)

\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.

Bạn thêm điều kiện n là số tự nhiên nhé ^^

kikyou
Xem chi tiết
Dương Thị Khánh Linh
Xem chi tiết
Phạm Thu Hương
Xem chi tiết