Chứng minh:
Nếu a^2+b^2+c^2=ab+ac+bc thì a=b=c
Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
Chứng minh rằng:
a) Nếu a2+b2=ab+ba thì a=b
b) Nếu a2+b2+c2=ab+bc+ac thì a=b=c
a) => 2a^2 + 2b^2 = 2ab + 2ba
=> 2a^2 + 2b^2 - 2ab - 2ba = 0
=> (a-b)^2 + (a-b)^2 = 0
=> 2(a-b)^2 = 0
=> a-b = 0
=> a = b
b) Nhân hai vế với 2 và làm tương tự câu a)
=> (a-b)^2 + (b-c)^2 + (a-c)^2 = 0
=> a = b = c
Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng :
a) Nếu góc A = 30 độ thì a^2 = b^2 + c^2 - bc\(\sqrt{3}\)
b) Nếu góc A = 60 độ thì a^2 = b^2 + c^2 - bc
chứng minh rằng nếu m=a+b+c thì: (am+bc)(bm+ac)(cm+ab)=(a+b)2(b+c)2(c+a)2
Chứng minh rằng nếu (a+b+c)2 = 3(ab+bc+ac) thì a=b=c.
TA có
( a+ b+ c )^2 = 3 (ab+bc+ ac)
=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = 3ab + 3ac + 3bc
=> a^2 + b^2 + c^2 -ab- bc - ac = 0
=>2 ( a^2 + b^2 + c^2 - ab-bc-ac) = 0
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2ac + a^ 2 = 0
=> ( a - b)^2 +( b -c )^2 + ( c -a )^2 = 0
=> a- b = 0 và b - c = 0 và c - a = 0
=> a= b và b = c và c =a
VẬy a= b= c
(a + b + c)^2=3(ab+ac+bc)
<=>a^2 +b^2+c^2+2ab+2ac+2bc -3ab-3ac-3bc=0
<=>a^2+b^2+c^2-ab-ac-bc=0
<=> 2a^2+2b^2+2c^2-2ab-2ac-2bc=0
<=> (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2) = 0
<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0
<=> a = b = c
Chứng minh
a) Nếu ( a^2+b^2 ) ( x^2+y^2) = ( ax +by ) với x,y khác 0 thì ay = by
b) Nếu ( a+b)^2 = 2 ( a^2+b^2 ) thì a=b
c) Nếu a^2+b^2+c^2=ab+ac+bc thì a=b=c
giải cách làm giup minh nha ai nhanh minh tick