Ta có : \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) \(\Leftrightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c\)
2a2+2b2+2c2-2ab-2ac-2bc=0
(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=0
(a2-b2)+(b2-c2)+(a2-c2)=0
=>(a2-b2)=0
(b2-c2)=0
(a2-c2)=0
→a=b=c