giải phương trình nghiệm nguyên:
2x² + 2y² + 2xy -2x + 2y + 2 = 0
Giải phương trình nghiệm nguyên : \(2x^2y^2-3x^2y+2xy^2+x^2-x+y=0\)
Giải phương trình nghiệm nguyên :
a) \(2x^4-2x^2y+y^2-64=0\)
b) \(5x^2+2y^2+2xy+3y-4=0\)
\(2x^4-2x^2y+y^2-64=0.\)
\(x^4+x^4-2x^2y+y^2-64=0.\)
\(\left(x^4-2x^2y+y^2\right)+x^4-64=0.\)
\(\left(x^2-y\right)^2+x^4-64=0.\)
\(\left(x^2-y\right)^2+x^4=64.\)
Có \(\left(x^2-y\right)^2\ge0\)
mafk \(\left(x^2-y\right)^2+x^4=64.\)
\(\Rightarrow x^4\le64.\)
\(\Rightarrow x^2\le8\)
Từ đó xét tiếp
Giải phương trình nghiệm nguyên: x^2 + 2xy + 2x + 2y - 3y^2 = 4
Giải phương trình nghiệm nguyên
a) \(x^2+2y^2-2xy+4x-3y-26=0\)
b) \(x^2+3y^2+2xy-2x-4y-3=0\)
c) \(2x^2+y^2+3xy+3x+2y+2=0\)
d) \(3x^2-y^2-2xy-2x-2y+8=0\)
giải phương trình nghiệm nguyên sau
\(5\left(2x^2y+2x+2xy^2+y\right)-49=49x\)
phải là 5(2x2y+2x+2xy2+y)-49=49x chứ
giải phương trình nghiệm nguyên sau đây:
\(x^2+2y^2=2xy+2x+3y\)
tìm nghiệm nguyên của phương trình:
\(2x^2+y^2-2xy+2y-6x+5=0\)
ta có vt = (x - y)2 + ( x + x )2 +z2 = 12
ta có chính phương <= 12 là các số 1,4,9 ta tháy bộ 3 số chính phương cọng lại bằng 12 chỉ co ( 4 , 4 ,4 ) vậy ta có hệ
( x - y )2 = z2 =4
pần còn lại bạn tự giải nha
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Giải phương trình
2x2 -2x +2y2 -2y +2 -2xy =0
2x2 - 2x + 2y2 - 2y + 2 - 2xy = 0
<=> (x2 - 2xy + y2) + (x2 - 2x + 1) + (y2 - 2y + 1) = 0
<=> (x - y)2 + (x - 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x-y=0\\x-1=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=y\\x=1\\y=1\end{cases}}\)
Vậy x = y = 1