2x² + 2y² + 2xy -2x + 2y + 2 = 0
<=>x2+2xy+y2+x2-2x+1+y2+2y+1=0
<=>(x+y)2+(x-1)2+(y+1)2=0
<=>x-1=0 và y-1=0
<=>x=1 và y=-1
2x² + 2y² + 2xy -2x + 2y + 2 = 0
<=>x2+2xy+y2+x2-2x+1+y2+2y+1=0
<=>(x+y)2+(x-1)2+(y+1)2=0
<=>x-1=0 và y-1=0
<=>x=1 và y=-1
Giải phương trình nghiệm nguyên :
a) \(2x^4-2x^2y+y^2-64=0\)
b) \(5x^2+2y^2+2xy+3y-4=0\)
Giải phương trình nghiệm nguyên: x^2 + 2xy + 2x + 2y - 3y^2 = 4
Giải phương trình nghiệm nguyên
a) \(x^2+2y^2-2xy+4x-3y-26=0\)
b) \(x^2+3y^2+2xy-2x-4y-3=0\)
c) \(2x^2+y^2+3xy+3x+2y+2=0\)
d) \(3x^2-y^2-2xy-2x-2y+8=0\)
tìm nghiệm nguyên của phương trình:
\(2x^2+y^2-2xy+2y-6x+5=0\)
Giải phương trình
2x2 -2x +2y2 -2y +2 -2xy =0
giải phương trình nghiệm nguyên 2x^3-2y^3+5xy+1=0
Giải phương trình nghiệm nguyên x2− 2y2 − xy + 2x − y − 2 = 0.
Giải phương trình nghiệm nguyên: a)\(2x^4+3x^2=x^3+x^2y+x+y+16\) b)\(2x^3=x^2+2xy+13x+y+86\)
A.Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
B. Co x,y là các số thực khác 0 tỏa mãn: x2-2xy+2y2-2x-2y+5=0. Tính giá trị của biểu thức P=\(\frac{xy+x+y+13}{4xy}=0\)