Tìm n thuộc N sao cho
n.(n + 1 ) = 6
giúp mik với mik đg cần gấp
Giúp mik với mik đg cần gấp ^_^"
Tìm n sao cho n + 21 và n + 40 đều được kết quả là 1 số chính phương !!!
Ta có n + 21 = n + 40
2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1
Mà 2n-1 chia hết 2n-1
=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1
=> 2n-1 thuôc Ư(6) = {1,2,3,6}
TH1: 2n-1 =1 => n=1
TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)
TH3: 2n-1 = 3 => n=2
TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)
Vậy n có 2 giá trị là 1 và 2
đồng ý với ý kiến của nhất sông núi nhưng hình như bn đã làm lạc đề thì phải...
mk cx ko biết nữa nhưng dù sao cx cảm ơn bn nhất sông núi của chúng ta chứ
bn nhất sông núi đã giúp bn nguyen trung nghia mà
vs
n-1/n+2 và 2n+1/2n+5 với n thuộc N và n>1
lm nhanh giúp mình mik đg cần gấp
tìm n thuộc Z
A) n+1 là ước của 2n
B) n-2 là ước của 2n+3
giải hộ mik nha! Mik đg cần gấp
ta có
a. \(2n=2\left(n+1\right)-2\text{ là bội của }n+1\)khi \(2\text{ là bội của }n+1\)
\(\Leftrightarrow n+1\in\left\{\pm1,\pm2\right\}\Rightarrow n\in\left\{-3,-2,0,1\right\}\)
b. \(2n+3=2\left(n-2\right)+7\text{ là bội của }n-2\text{ khi 7 là bội của }n-2\)
\(\Leftrightarrow n-2\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-5,1,3,9\right\}\)
Tìm n thuộc N để
A)4n-7 chia hết cho n-1
B)5n - 8 chia ht cho 4-n
C)10-2n chia hết cho n-2
Jup mik đi mik đg cần gấp ai trả lời mik tick cho
a) ta có: 4n-7 chia hết cho n -1
=> 4n - 4 - 3 chia hết cho n - 1
4.(n-1) - 3 chia hết cho n - 1
mà 4.(n-1) chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3)={1;-1;3;-3}
...
rùi bn tự lập bảng xét giá trị nha
b) ta có: 5n -8 chia hết cho 4-n
=> 12 - 20 + 5n chia hết cho 4 -n
12 - 5.(4-n) chia hết cho 4 -n
mà 5.(4-n) chia hết cho 4 -n
=> 12 chia hết cho 4-n
=> ...
c) ta có: 10 -2n chia hết cho n - 2
=> 6 - 2n + 4 chia hết cho n - 2
6 - 2.(n-2) chia hết cho n - 2
mà 2.(n-2) chia hết cho n - 2
=> 6 chia hết cho n - 2
=> ....
Tìm n là số tự nhiên sao cho:
3n - 5 chia hết cho n + 1
GIÚP MIK VỚI Ạ, ĐG CẦN GẤP. AI LÀM XONG TIK NHA
Ta có: 3n+5⋮n+1.
(3n+3)+2⋮n+1.
3(n+1)+2⋮n+1.
mà 3(n+1)⋮n+1
⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.
Ta lập bảng xét giá trị
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)
TC : 3n-5 -[3.(n+1)]:hết cho n+1
3n-5 -(3n+3) :hết cho n+1
3n- 5 - 3n-3:hết cho n+1
2:hết cho n+1 =≫n+1 thuôc Ư(2)={1;2}
thay n+1lần lượt= 1;2 là ban sẽ ra
GIÚP MIK VỚI Ạ, ĐG CẦN GẤP
Tìm số tự nhiên n sao cho :
3n + 1 chia hết cho 11 - n
3n+1 chia hết 11-n
<=> 3n+1+(11-n).3 chia hết 11-n (11-n chia hết cho 11-n)
<=>12 chia hết 11-n
=> 11-n thuộc tập hợp Ư(12) = {1; 2; 3; 4; 6 ; 12}
Mà 11-n <12 =)) 11-n thuộc tập hợp {1; 2; 3; 4; 6}
Vậy n thuộc tập hợp {5; 7; 8; 9; 10}
Mình đánh máy nên ko dùng kí hiệu đc, mong bạn thông cảm giúp mình
Tìm n thuộc STN sao cho 6n+5 chia hết cho 3n-1
Chiều nay mik cần gấp !Giúp mik với
\(6n+5=2\left(3n-1\right)+7\)
\(2\left(3n-1\right)\)chia hết cho \(3n-1\)nên 7 chia hết cho \(3n-1\)
Do đó \(3n-1\)nhận các giá trị \(7;1;-1;-7\)
Do đó n nhận các giá trị \(\frac{8}{3};\frac{2}{3};0;-2\)
Vì \(n\in N\)nên chỉ nhận giá trị là 0
Vậy \(n=0\)
a, chứng minh rằng ucln(5n+1;6n+1)=1 (n thuộc N)
b, tìm ucln(2n+1;9n+6)
c, so sánh hai số A = 2 mũ 99; B= 5 mũ 47
d, chứng minh bcnn(6n+1;n)=6n mũ 2 +n với n thuộc N
Mik đg cần gấp lắm ai trả lời đúng nhất mik sẽ tik nha
Tìm số tự nhiên n dể \(1^n+2^n+3^n+4^n\) chia hết cho 5.]
Giải giùm mik nha. Mik đg cần gấp
Với n = 0 => A = 1n + 2n + 3n + 4n = 4( loại )
Với n = 1 => A= 1n + 2n + 3n + 4n = 10 \(⋮\)5 ( t/m )
Với n \(\ge\)2
+) Nếu n là số chẵn => n = 2k ( k \(\in\)N)
=> A = 1 + 4k + 9k + 16k
Ta thấy : 4 chia 5 dư ( - 1 ) => 4k chia 5 dư ( -1 )k
: 9 chia 5 dư ( - 1 ) => 9k chia 5 dư ( - 1 )k
: 16 chia 5 dư 1 => 16k chia 5 dư 1
=> A chia 5 dư 1 + ( - 1 )k + ( - 1 )k + 1
Nếu k chẵn => A chia 5 dư 4 ( loại )
Nếu k lẻ => k = 2m + 1 ( m \(\in\)N )
=> A = 1 + 42m . 4 + 92m . 9 + 162m . 16
= 1 + 16m . 4 + 81m . 9 + 256m .16
Vì 16 ; 81 ; 256 chia 5 dư 1 => A chia 5 có số dư bằng ( 1 + 4 + 9 +16 ) cho 5 => A \(⋮\) 5
=> n = 2. ( 2m + 1 ) = 4m + 2 thì A \(⋮\)5
Nếu n lẻ => n = 2h + 1 ( h \(\in\)N
=> A = 1 + 4h . 2 + 9h . 3 + 16h . 4
=> A chia 5 dư 1 +( -1)h .2 + (-1)h . 3 + 4
Khi h lẻ để A \(⋮\)5 => n = 2. ( 2.i + 1 ) + 1 = 4.i + 3 ( i \(\in\)N )
+) TH1: n = 4k; k là số tự nhiên
Ta có: \(1^n+2^n+3^n+4^n=1^{4k}+2^{4k}+3^{4k}+4^{4k}\equiv4\left(mod5\right)\)
=> n = 4k loại
+) TH2: n = 4k + 1; k là số tự nhiên
Ta có: \(1^n+2^n+3^n+4^n=1^{4k+1}+2^{4k+1}+3^{4k+1}+4^{4k+1}\equiv0\left(mod5\right)\)
=> n = 4k + 1 thỏa mãn
+) TH3: n = 4k + 2; k là số tự nhiên
Ta có: \(1^n+2^n+3^n+4^n=1^{4k+2}+2^{4k+2}+3^{4k+2}+4^{4k+2}\equiv0\left(mod5\right)\)
=> n = 4k + 2 thỏa mãn
+) Th4: n = 4k + 3; k là số tự nhiên
Ta có: \(1^n+2^n+3^n+4^n=1^{4k+3}+2^{4k+3}+3^{4k+3}+4^{4k+3}\equiv0\left(mod5\right)\)
=> n = 4k + 4 thỏa mãn
Vậy với mọi số tự nhiên n khác 4k hay n không chia hết cho 4 thì
\(1^n+2^n+3^n+4^n\)chia hết cho 5