\(\frac{2}{3}\)x+\(\frac{1}{2}\)=\(\frac{1}{10}\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\frac{x+2}{x+1}-\frac{1}{x-2}=1-\frac{3}{x^2-x-2}\)
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
\(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)
\(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\left(x^2+x+1-3x^2-2x^2+2x\right)=0\)
\(\Leftrightarrow-4x^2+3x+1=0\left(\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\ne0\right)\)
\(\Leftrightarrow-4x^2+4x-x+1=0\)
\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\-4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\-4x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=\frac{-1}{4}\end{cases}}}\)
Vậy \(x=\frac{-1}{4}\)
Bài 1:Tìm x biết Bài 2:So sánh
a, \(x+\frac{1}{2}=\frac{3}{8}.\frac{4}{5}\) a, \(A=\frac{10^{10}-1}{10^{11}-1}vaB=\frac{10^9-1}{10^{10}-1}\)
b, \(\frac{5}{16}:x-\frac{1}{4}=\frac{5}{8}\) b, B =\(\frac{10^{10}}{10^{10}+1}vaB=\frac{10^{10}+1}{10^{10}+2}\)
c, \(\frac{-1}{4}.x+\frac{3}{7}.x=2\)
d, \(\frac{22}{9}-\left(x+\frac{1}{2}\right)^2=\frac{7}{3}\)
e, \(\left|\frac{1}{4}-x\right|+5\frac{1}{8}=6\frac{1}{8}\)
Giải phương trình:
1. \(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
2. \(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
3. \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
4. \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
5. \(\frac{x-4}{5}-\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
6. \(\frac{\left(x+2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
7. \(\frac{\left(x+2\right)^2}{8}-2\left(2x-1\right)=25+\frac{\left(x-2\right)^2}{8}\)
8.\(\frac{7x^2-14x-5}{5}=\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}\)
9. \(\frac{\left(2x-3\right)\left(2x+3\right)}{8}=\frac{\left(x-4\right)^2}{6}+\frac{\left(x-2\right)^2}{3}\)
10. \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
\(A=\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)\(B=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{4}\right)x.......x\left(1-\frac{1}{2015}\right)x\left(1-\frac{1}{2016}\right)\)
\(C=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}x4\frac{1}{2}-2x2\frac{1}{3}\right):\frac{7}{4}\)
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
tìm x :
a)\(x:4\frac{1}{3}=2.5\)
b)\(x:\frac{-3}{5}=\frac{-10}{21}\)
c)\(\frac{2}{3}.x-\frac{1}{2}=\frac{1}{10}\)
d)\(\frac{1}{3}.x+\frac{2}{5}\left(x-1\right)=0\)
e)\(\frac{1}{2}.x+\frac{1}{2}=\frac{5}{2}\)
f)\(\frac{-2}{3}-\frac{1}{3}\left(2x-5\right)=\frac{3}{2}\)
g)\(\left(3x-1\right)\left(-\frac{1}{2}.x+5\right)=0\)
h)\(3\frac{1}{3}+\frac{5}{6}.x=3\frac{1}{2}\)
Việt Nam đất nước anh hùng.....^^
Trung Quốc là nước nửa khùng nửa điên.
Việt Nam đang sống bình yên.
Trung Quốc đừng có làm phiền Việt Nam.
Trung Quốc đông dân toàn cỏ rác.
Việt Nam lác đác toàn siêu nhân.
Việt Nam cưỡi rồng bay trong gió.
Trung Quốc cưỡi chó sủa:"gâu" "gâu".
Thái Lan hỏi nó đi đâu.
Nó cười, nó bảo:" đi hầu Việt Nam
1, \(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
2, \(2.\left(\frac{3}{2}-x\right)-\frac{1}{3}=7x-\frac{1}{4}\)
3,\(-\frac{3}{2}.\left(5-\frac{1}{6}\right)+4.\left(x-\frac{1}{2}\right)=\frac{1}{2}+x\)
4,\(-\frac{5}{7}.\left(\frac{2}{5}-x\right)-\frac{1}{3}=\frac{1}{5}-\frac{3}{10}\)
5,\(4-\frac{2}{3}.\left(x-3\right)=2-\frac{1}{2}+\frac{2}{3}\)
6,\(\frac{2}{3}-\frac{5}{3}.x=\frac{7}{10}.x+\frac{5}{6}\)
7,\(3.\left(x-\frac{5}{3}\right)+\frac{1}{2}=2\left(x-\frac{1}{4}\right)+\frac{5}{2}\)
Phần nào có bn giải rầu các men đừng giải lại nha mk sẽ ko tk đâu chỉ tik những phần chưa lm
1,\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\frac{41}{6}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{41}{14}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{137}{42}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{137}{42}-\frac{1}{2}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{58}{21}\)
\(\left(x-\frac{9}{4}\right)=\frac{5}{2}:\frac{2}{9}\)
\(\left(x-\frac{9}{4}\right)=\frac{45}{4}\)
\(x=\frac{45}{4}+\frac{9}{4}\)
\(x=\frac{27}{2}\)
Bước cưối 58/21 minh man viết nhầm nên sai
\(\left(x-\frac{9}{4}\right)=\frac{58}{21}:\frac{2}{9}\)
\(\left(x-\frac{9}{4}\right)=\frac{87}{7}\)
\(x=\frac{87}{7}+\frac{9}{4}\)
\(x=\frac{411}{28}\)
Tìm x biết
a) x+2x+3x+4x+...+100x=-213
b)\(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
c)3(x-2)+2(x-1)=10
d)\(\frac{x+1}{3}=\frac{x-2}{4}\)
e)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
f)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) x + 2x + 3x + ... +100x = -213
=> x . (1 + 2 + 3 +... + 100) = - 213
=> x . 5050 = -213
=> x = - 213 : 5050
=> x = -213/5050
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
=> \(\frac{1}{2}x-\frac{1}{4}x=\frac{1}{3}-\frac{1}{6}\)
=> \(x.\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{6}\)
=> \(x.\frac{1}{4}=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{1}{4}\)
=> \(x=\frac{2}{3}\)
c) 3(x-2) + 2(x-1) = 10
=> 3x - 6 + 2x - 2 = 10
=> 3x + 2x - 6 - 2 = 10
=> 5x - 8 = 10
=> 5x = 10 + 8
=> 5x = 18
=> x = 18:5
=> x = 3,6
d) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> \(4\left(x+1\right)=3\left(x-2\right)\)
=>\(4x+4=3x-6\)
=> \(4x-3x=-4-6\)
=> \(x=-10\)
a) \(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
b) \(\frac{x-2018}{2}+\frac{x-2020}{4}=\frac{x-2040}{8}+\frac{x-2030}{14}\)
\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)
\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)
\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
Mình làm tiếp câu b nha !
b, Bài giải
\(\frac{x-2018}{2}+\frac{x-2020}{4}=\frac{x-2040}{8}+\frac{x-2030}{14}\)
\(\left(\frac{x-2018}{2}+1\right)+\left(\frac{x-2020}{4}+1\right)=\left(\frac{x-2040}{8}+1\right)+\left(\frac{x-2030}{14}+1\right)\)
\(\frac{x-2016}{2}+\frac{x-2016}{4}=\frac{x-2032}{8}+\frac{x-2016}{14}\)
\(\left(x-2016\right)\left(\frac{1}{2}+\frac{1}{4}\right)=\frac{x-2016}{8}-2+\frac{x-2016}{14}\)
\(\left(x-2016\right)\cdot\frac{3}{4}=\left(x-2016\right)\left(\frac{1}{8}+\frac{1}{14}\right)-2\)
\(\left(x-2016\right)\cdot\frac{3}{4}=\left(x-2016\right)\cdot\frac{11}{56}-2\)
\(\left(x-2016\right)\cdot\frac{3}{4}-\left(x-2016\right)\cdot\frac{11}{56}=-2\)
\(\left(x-2016\right)\left(\frac{3}{4}-\frac{11}{56}\right)=-2\)
\(\left(x-2016\right)\cdot\frac{31}{56}=-2\)
\(x-2016=-2\text{ : }\frac{31}{56}\)
\(x-2016=-\frac{112}{31}\)
\(x=-\frac{112}{31}+2016\)
\(x=\frac{62384}{31}\)
bài 2 tìm x
a,\(\frac{-2}{3}.x+\frac{1}{5}=\frac{3}{10}\)
b,\(\left|x\right|-\frac{3}{4}=\frac{5}{3}\)
c,\(\frac{2}{3}.x-\frac{1}{2}=\frac{1}{10}\)
d,\(\frac{3}{5}+\frac{4}{9}:x=\frac{2}{3}\)
e,\(\left|x+75\%\right|=2\frac{1}{5}\)
i,\(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2.x\right)=0\)
k,\(\frac{4}{7}.x-\frac{2}{3}=\frac{1}{5}\)
l,\(\frac{2}{3}.x-\frac{3}{2}.x=\frac{5}{12}\)
m,\(\left|2.x-\frac{1}{3}\right|+\frac{5}{6}=1\)
n,\(\frac{1}{3}-\frac{7}{8}.x=\frac{1}{3}\)
11,\(\frac{x+2}{5}=\frac{7}{12}-1\frac{1}{4}\)
12,\(\left(2\frac{4}{5}.x-50\right):\frac{2}{3}=51\)
13,\(\frac{2}{5}+\frac{3}{5}.\left(3.x-3,7\right)=-\frac{53}{10}\)
14,\(\frac{7}{9}:\left(2+\frac{3}{4}.x\right)+\frac{5}{9}=\frac{23}{27}\)