Giải phương trình sau:
\(\frac{4}{5}-\frac{3}{2}\cdot x=\frac{7}{15}\)
Giải phương trình sau:
\(\frac{7}{8}-\frac{1}{3}\cdot x=\frac{7}{10}+\frac{2}{3}\cdot x\)
Ta có: \(\frac{7}{8}-\frac{1}{3}x=\frac{7}{10}+\frac{2}{3}x\)
<=> \(\frac{7}{8}-\frac{7}{10}=\frac{2}{3}x+\frac{1}{3}x\)
<=>\(\frac{7}{40}=x\)
Vậy x=7/40
\(\frac{7}{8}-\frac{1}{3}x=\frac{7}{10}+\frac{2}{3}\)
\(\Leftrightarrow-\frac{1}{3}x-\frac{2}{3}x=\frac{7}{10}-\frac{7}{8}\)
\(\Leftrightarrow-x=-\frac{7}{40}\)
\(\Leftrightarrow x=\frac{7}{40}=0,175\)
Ta có: \(\frac{7}{8}-\frac{1}{3}.x=\frac{7}{10}+\frac{2}{3}.x\)
\(\Rightarrow\frac{7}{8}-\frac{7}{10}=\frac{2}{3}.x+\frac{1}{3}.x\)
\(\Rightarrow\frac{35}{40}-\frac{28}{40}=\left(\frac{2}{3}+\frac{1}{3}\right).x\)
\(\Rightarrow\frac{7}{40}=x\)
Vậy \(x=\frac{7}{40}\)
Chúc bạn hok tốt!
Giải phương trình:
\(\frac{7}{10}-\frac{5}{8}\cdot x-\frac{7}{6}=\frac{5}{6}\cdot x\)
Ta có: \(\frac{7}{10}-\frac{5}{8}.x-\frac{7}{6}=\frac{5}{6}.x\)
\(\Rightarrow\frac{7}{10}-\frac{7}{6}=\frac{5}{6}x+\frac{5}{8}x\)
\(\Rightarrow\frac{21}{30}-\frac{35}{30}=\left(\frac{5}{6}+\frac{5}{8}\right)x\)
\(\Rightarrow-\frac{7}{15}=\left(\frac{15}{24}+\frac{20}{24}\right)x\)
\(\Rightarrow-\frac{7}{15}=\frac{35}{24}x\)
\(\Rightarrow x=-\frac{7}{15}:\frac{35}{24}\)
\(\Rightarrow x=-\frac{7}{15}.\frac{24}{35}\)
\(\Rightarrow x=-\frac{8}{25}\)
Vậy \(x=-\frac{8}{25}\)
Chuk bạn hok tốt!
Giải phương trình:
\(\frac{7}{10}-\frac{5}{8}\cdot x-\frac{7}{6}=\frac{5}{6}\cdot x\)
Giải phương trình sau: \(\frac{3}{4\left(x-5\right)}+\frac{15}{2x^2-50}-\frac{7}{6\left(x+5\right)}=0\)
Tìm x:
\(\frac{\left(13\frac{2}{9}-15\frac{2}{3}\right)\cdot\left(30^2-5^4\right)}{\left(18\frac{3}{7}-17\frac{1}{4}\right)\cdot\left(25-12\cdot5^2\right)}\cdot x=\frac{\frac{2}{11}+\frac{3}{13}+\frac{4}{15}+\frac{5}{17}}{4\frac{1}{11}+\frac{5}{13}+\frac{9}{15}+\frac{13}{17}}\)
Giải phương trình bậc nhất 1 ẩn sau đây:
\(\frac{2+\sqrt{3}}{3-\sqrt{5}}x-\frac{1-\sqrt{6}}{3+\sqrt{2}}\left(x-\frac{3-\sqrt{7}}{4-\sqrt{3}}\right)=\frac{15-\sqrt{11}}{2\sqrt{3}-5}\)
Giải phương trình sau :
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}\cdot\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\).
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne\pm1\)
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}\cdot\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}=\frac{x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}-\frac{x+1}{x^2-1}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow\text{ }2\left(x-1\right)+x\left(x+1\right)-(x+1)=0\)
\(\Leftrightarrow\text{ }2\left(x-1\right)+\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1\text{ (loại)}\\x=-3\text{ (Chọn)}\end{cases}}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3\right\}\).
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}.\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)\(đk:x\ne\pm1\)
\(< =>\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left[\frac{7}{6}.\frac{6}{7}+\left(1\right)\right]x+1}{x^2-1}\)
\(< =>\frac{2x-2+x^2+x}{x^2+x-x-1}=\frac{2x+1}{x^2-1}\)\(< =>\frac{x^2+3x-2}{x^2-1}=\frac{2x-1}{x^2-1}\)
\(< =>x^2+2x-2=2x-1\)\(< =>x^2+2x-2x-2+1=0\)
\(< =>x^2-1=0< =>x^2=1\)\(< =>x=\pm1\)\(\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
Bài 1. Giải các phương trình sau :
a) 7x - 35 = 0 b) 4x - x - 18 = 0
c) x - 6 = 8 - x d) 48 - 5x = 39 - 2x
Bài 2. Giải các phương trình sau :
a) 5x - 8 = 4x - 5 b) 4 - (x - 5) = 5(x - 3x)
c) 32 - 4(0,5y - 5) = 3y + 2 d) 2,5(y - 1) = 2,5y
Bài 3. Giải các phương trình sau :
a) \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
b) \(\frac{4x-7}{12}- x=\frac{3x}{8}\)
Bài 4. Giải các phương trình sau :
a) \(\frac{5x-8}{3}=\frac{1-3x}{2}\)
b) \(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
Bài 5. Giải các phương trình sau :
a) 6(x - 7) = 5(x + 2) + x b) 5x - 8 = 2(x - 4) + 3
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
có bị viết nhầm thì thông cảm nha!
la`thu'hai nga`y 19 nhe
tính nhanh
A= \(\frac{19}{23}\cdot\frac{-4}{7}-\frac{4}{23}\cdot\frac{2}{7}\)
B= \(\frac{3}{5}+\frac{2}{5}\cdot\frac{-11}{3}+\frac{2}{3}\cdot\frac{-2}{5}+\frac{14}{15}\)
a) A = \(\frac{19}{23}.\frac{-4}{27}-\frac{4}{23}.\frac{2}{7}\)
= \(\frac{19}{7}.\frac{-4}{23}+\frac{-4}{23}.\frac{2}{7}\)
= \(\frac{-4}{23}.\left(\frac{19}{7}+\frac{2}{7}\right)\)
= \(\frac{-4}{23}.3\)
= \(\frac{-12}{23}\)
b) B = \(\frac{3}{5}+\frac{2}{5}.\frac{-11}{3}+\frac{2}{3}.\frac{-2}{5}+\frac{14}{15}\)
= \(\frac{9+14}{15}+\frac{2}{5}.\frac{-11}{3}+\frac{-2}{3}.\frac{2}{5}\)
= \(\frac{23}{15}+\frac{2}{5}\left(\frac{-11}{3}+\frac{-2}{3}\right)\)
= \(\frac{23}{15}+\frac{2}{5}.\frac{-13}{3}\)
= \(\frac{23}{15}+\frac{-26}{15}\)
= \(\frac{-3}{15}=\frac{-1}{5}\)