Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chuột michkey
Xem chi tiết
SKT_Rengar Thợ Săn Bóng...
16 tháng 6 2016 lúc 8:35

theo câu 1 thì AC < p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi 

Giao của AC và BD là O

Trong tam giác OAB có OA + OB > AB trong tam giác OBC + OB + OC > BC
Trongtam giác OAD có OA + OD > AD , trong tam giác ODC có OD + OC > CD

Cổng 4  bất đẳng thức cùng chiều này lại ta có :

2 x OD + 2 x OB + 2 x OA + 2 x OC > AB + BC + CD + DA

< => 2BD + 2AC > 2p < = > BD + Ac > 2p đường chéo lớn của nửa chu vi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 9 2017 lúc 4:56

. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

Nguyễn Hữu Quang
Xem chi tiết

Bài 1: loading...

Gọi E là giao điểm của hai đường chéo AC và BD 

Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC 

                                  (AE + CE) + (BE + DE) > AB + DC

                                     AC + BD > AB + DC 

Tương tự ta có AC + BD > AD + BC 

Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.

Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)

Theo chứng minh trên ta có:

 \(\dfrac{AB+BC+CD+DA}{2}\)\(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)

Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:

AB + AD > BD 

AB + BC > AC

BC + CD > BD 

CD + AD > AC 

Cộng vế với vế ta có:

(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2

⇒AB + BC + CD + DA > BD + AC  (2)

Kết hợp (1) và (2) ta có:

Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác

 

 

 

Bài : 2 Góc C = 1800 - 600 = 1200

          Tổng bốn góc của tứ giác là 3600

           Ta có: Góc B của tứ giác ABCD là:

              3600 - (700 + 800 + 1200) = 900

Câu b chứng minh như bài 1

Gia Hân
18 tháng 7 2023 lúc 9:15

Bài 1:

a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

 

Bài 3:

Tứ giác ABCD có góc C + góc D = 90 độ . Chứng minh rằng AC^2 + BD^2 = AB^2 + CD^2 (ảnh 1)

Gọi O là giao điểm AD và BC.

Ta có �^+�⏜=900 nên �^=900

Áp dụng định lí Py – ta – go,

Ta có 

��2=��2+��2.

��2=��2+��2

Nên 

Nguyễn Hữu Quang
Xem chi tiết
Anh Hoàng Thị Mai
Xem chi tiết
Hoang thi dieu linh
Xem chi tiết
Yuan Bing Yan _ Viên Băn...
20 tháng 8 2015 lúc 18:46

Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
 giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm) 

OoO_Nhok_Lạnh_Lùng_OoO
24 tháng 8 2017 lúc 20:47

*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 

* giao của AC và BD là O. 

trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 

trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 

cổng 4 bất đẳng thức cùng chiề này lại ta có: 

2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 

<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)

tự đặt tên vào hình nha :))

Xét tam giác AOB; tam giác BOC; tam giác COD; tam giác AOD ta có:

AO+BO>AB;BO+CO>BC;CO+DO>CD;AO+DO>AD

(áp dụng bất đẳng thức tam giác)

AO+BO+BO+CO+CO+DO+AO+DO>AB+BC+CD+AD( còn đâu tự làm )

2(AO+BO+CO+DO)>AB+BC+CD+AD

=

2.(AC+BD)>AB+BC+CD+AD

nguyễn thị tuyết nhi
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 7 2016 lúc 14:16

A B C D O

Giả sử tứ giác đó là ABCD , hai đường chéo AC và BD cắt nhau tại O

Theo bất đẳng thức tam giác, ta có : \(AO+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OD+OA>AD\)

\(\Rightarrow OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA\)

\(\Leftrightarrow2\left(AC+BD\right)>AB+BC+CD+AD\Leftrightarrow AC+BD>\frac{AB+BC+CD+AD}{2}\)

Theo bất đẳng thức tam giác : \(AB+BC>AC\) ; \(AD+DC>AC\)\(AB+AD>BD\) ; 

\(BC+CD>BD\)

\(\Rightarrow AB+BC+AD+DC+AB+AD+BC+CD>AC+AC+BD+BD\)

\(\Leftrightarrow2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\Leftrightarrow AB+BC+CD+DA>AC+BD\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
29 tháng 6 2017 lúc 11:16

Tứ giác.

Tứ giác.

Minh tú Trần
Xem chi tiết
Huỳnh Quang Sang
27 tháng 7 2020 lúc 10:48

Gọi O là giao điểm của AC và BD.Ta có :

OA + OB > AB , OB + OC > AC ; OC + CD > CD , OD + OA > AD.Cộng từng vế các bất đẳng thức trên rồi chia cho 2 ,ta được \(AC+BD>\frac{AB+BC+CD+AD}{2}\)

Vậy tổng hai đường chéo lớn hơn nửa chu vi

Kết hợp : AC + BD < AB + BC + CD + DA

Vậy \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC< CD+DA\)

Khách vãng lai đã xóa
FL.Han_
27 tháng 7 2020 lúc 11:07

Đặt độ dài AB = a, BC = b, CD = c, AD = d

Gọi O là giao điểm hai đường chéo AC và BD

Trong ∆OAB, ta có:

OA + OA > a (bất đẳng thức tam giác)          (1)

Trong ∆OCD ta có:

Từ (1) và (2) suy ra:

OA + OB + OC + OD > a + c

Khách vãng lai đã xóa